Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "stop tytanu" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Corrosion behaviour of polished and sandblasted titanium alloys in PBS solution
Autorzy:
Burnat, B.
Walkowiak-Przybyło, M.
Błaszczyk, T.
Klimek, L.
Powiązania:
https://bibliotekanauki.pl/articles/306724.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
corrosion
PBS solution
polishing
sandblasting
titanium alloys
korozja
stop tytanu
piaskowanie
Opis:
In this work, we performed comparative studies of the effect of surface preparation of Ti6Al4V and Ti6Al7Nb biomedical alloys and the influence of endothelial cells on their corrosion behaviour in PBS (Phosphate Buffered Saline). Two different methods of surface modification were applied – polishing and sandblasting. The polished Ti6Al7Nb alloy was found to have the best resistance against general corrosion in PBS. It was characterized by the lowest corrosion rate, the widest passive range and the lowest reactivity. Both alloys prepared by sandblasting exhibited worse corrosion properties in comparison to the polished ones. This can be associated with a greater development of their surface and the presence of Al2O3 grains which caused an increase of corrosion potential but might also influence the weakening of the passive layer. Results of potentiodynamic anodic polarization indicated that more resistant to pitting corrosion was Ti6Al7Nb alloy regardless of the method of surface preparation. In those cases, anodic polarization caused only an increase of passive layer, while in the case of sandblasted Ti6Al4V alloy it caused a pitting corrosion. The results obtained allowed us to conclude that the niobium-titanium alloys had higher corrosion resistance than titanium alloys with vanadium. Moreover, it was stated that endothelial cells improved the corrosion resistance of all the titanium alloys examined.
Źródło:
Acta of Bioengineering and Biomechanics; 2013, 15, 1; 87-94
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Biomechanical analysis of limited-contact plate used for osteosynthesis
Autorzy:
Pochrząst, M.
Basiaga, M
Marciniak, J.
Kaczmarek, M.
Powiązania:
https://bibliotekanauki.pl/articles/306242.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
internal fixation
biomechanics
locking compression plates
fracture
titanium alloys
biomechanika
pękanie
stop tytanu
Opis:
This paper presents the results of numerical analysis aimed at determining the state of stresses and displacements of compression plate used in osteosynthesis of tibia, carried out by applying finite element method using the ANSYS program. The analysis took into account two variants of the osteosynthesis. Variant I included the osteosynthesis in which plate was attached directly to the bone, in variant II, the plate was moved away from the bones by about 5 mm. Biomechanical characteristics of the corrective osteotomy plate–tibia was determined for implants made of Ti-6Al-4V alloy. The boundary conditions adopted for the analysis reflect phenomena occurring in a real system. Based on the results of the analysis relative displacements and reduced stresses in various components were determined as a function of the applied load within the range of F = 500–1500 N. The maximum forces, both variant I and variant II determined during analysis, ensure that the generated stress does not exceed yield strength of the material and compressive strength of the bone, and do not exceed safety movement in the fracture gap. In addition, it was found that the locking of the compressive plate to the bone has a little effect on the distribution of displacements and stresses on the plate–tibia system in the case of a simple fracture.
Źródło:
Acta of Bioengineering and Biomechanics; 2014, 16, 1; 99-105
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Technological capabilities of surface layers formation on implant made of Ti-6Al-4V ELI alloy
Autorzy:
Kiel-Jamrozik, M.
Szewczenko, J.
Basiaga, M.
Nowińska, K.
Powiązania:
https://bibliotekanauki.pl/articles/306377.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
odporność korozyjna
infiltracja
stop tytanu
biomateriały
corrosion resistance
ion infiltration
metallic biomaterials
surface modification
titanium alloys
Opis:
Purpose: The aim of the presented research was to find a combination of surface modification methods of implants made of the Ti-6Al-4V ELI alloy, that lead to formation of effective barrier for metallic ions that may infiltrate into solution. Methods: To this end, the following tests were carried out: roughness measurement, the voltamperometric tests (potentiodynamic and potentiostatic), and the ion infiltration test. Results: The electropolishing process resulted in the lowering of surface roughness in comparison with mechanical treatment of the surface layer. The anodization process and steam sterilization increased corrosion resistance regardless of the mechanical treatment or electropolishing. The crevice corrosion tests revealed that independent of the modification method applied, the Ti-6Al-4V ELI alloy has excellent crevice corrosion resistance. The smallest quantity of ions infiltrated to the solution was observed for surface modification consisting in the mechanical treatment and anodization with the potential of 97 V. Conclusions: Electric parameters determined during studies were the basis for effectiveness estimation of particular surface treatment methods. The research has shown that the anodization process significantly influences the pitting corrosion resistance of the Ti-6Al-4V ELI alloy independent of the previous surface treatment methods (mechanical and electrochemical). The surface layer after such modification is a protective barrier for metallic ions infiltrated to solution and protects titanium alloy against corrosive environment influence.
Źródło:
Acta of Bioengineering and Biomechanics; 2015, 17, 1; 31-37
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions
Autorzy:
Ryniewicz, A. M.
Bojko, Ł.
Ryniewicz, W. I.
Powiązania:
https://bibliotekanauki.pl/articles/307469.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
CAD/CAM
protetyka stomatologiczna
DMLS
mikrostruktura
mikrotwardość
tytan
stop tytanu
CAD/CAM system
dental prosthetics
direct metal laser sintering
microstructure
microhardness
titanium
titanium alloy
Opis:
Purpose: The aim of the present paper was a question of structural identification and evaluation of strength parameters of Titanium (Ticp – grade 2) and its alloy (Ti6Al4V) which are used to serve as a base for those permanent prosthetic supplements which are later manufactured employing CAD/CAM systems. Methods: Microstructural tests of Ticp and Ti6Al4V were conducted using an optical microscope as well as a scanning microscope. Hardness was measured with the Vickers method. Micromechanical properties of samples: microhardness and Young’s modulus value, were measured with the Oliver and Pharr method. Results: Based on studies using optical microscopy it was observed that the Ticp from the milling technology had a single phase, granular microstructure. The Ti64 alloy had a two-phase, fine-grained microstructure with an acicular-lamellar character. The results of scanning tests show that titanium Ticp had a single phase structure. On its grain there was visible acicular martensite. The structure of the two phase Ti64 alloy consists of a β matrix as well as released α phase deposits in the shape of extended needles. Micromechanical tests demonstrated that the alloy of Ti64 in both methods showed twice as high the microhardness as Ticp. In studies of Young’s modulus of Ti64 alloy DMLS technology have lower value than titanium milling technology. Conclusions: According to the results obtained, the following conclusion has been drawn: when strength aspect is discussed, the DMLS method is a preferred one in manufacturing load structures in dentistry and may be an alternate way for the CAD/CAM system used in decrement processing.
Źródło:
Acta of Bioengineering and Biomechanics; 2016, 18, 1; 121-127
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies