Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "foot arch" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Effect of a task’s postural demands on medial longitudinal arch deformation and activation of foot intrinsic and extrinsic musculatur
Autorzy:
Kurihara, Toshiyuki
Rowley, Michael
Reischl, Stephen
Baker, Lucinda
Kulig, Kornelia
Powiązania:
https://bibliotekanauki.pl/articles/27324092.pdf
Data publikacji:
2020
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
foot arch flexibility
fine-wire electromyography
intrinsic foot muscles
elastyczność łuku stopy
elektromiografia
wewnętrzne mięśnie stopy
Opis:
It is not well established how motion and muscle activation of the medial longitudinal arch (MLA) of the foot vary under different loading conditions. Intrinsic and extrinsic foot muscles may play a role in postural control, which may be investigated by comparing loading tasks with differing postural demands. The objective of this study was to investigate the interaction of MLA flexibility and loading task on muscle activation. Methods: Twenty healthy adults completed two instrumented single-foot loading tasks: controlled external load of 50% body weight while sitting and bilateral standing. Fine-wire intramuscular and surface electromyography collected flexor hallucis brevis, abductor hallucis, tibialis posterior, flexor hallucis longus, tibialis anterior, and peroneus longus activation. MLA deformation was measured as a percent change in navicular height with loading. Results: During seated external loading, greater MLA deformation was associated with greater muscle activation for all instrumented muscles (R2 = 0.224–0.303, p < 0.05) except for tibialis anterior. During bilateral stance, there were no correlations between MLA deformation and muscle activation. Activation of all extrinsic muscles except for tibialis anterior were greater during bilateral standing than during external loading ( p = 0.002–0.013), indicating activation of these muscles was caused by postural demands of the standing task, not simply load. Conclusions: MLA deformation and muscle activation are strongly task-dependent.
Źródło:
Acta of Bioengineering and Biomechanics; 2020, 22, 4; 23--29
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of arch type and Body Mass Index on plantar pressure distribution during stance phase of gait
Autorzy:
Obrien, D. L.
Tyndyk, M.
Powiązania:
https://bibliotekanauki.pl/articles/307001.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
body mass index
foot arch type
gait
plantar pressure distribution
indeks masy ciała
stopa
rozkład ciśnienia podeszwowego
Opis:
Several factors have been associated with the presence of abnormally high plantar foot pressure including: (i) increased body weight, (ii) foot structure and (iii) walking strategy. It is predicted that the biomechanics of the foot is influenced by the structure of the foot, primarily the Medial Longitudinal Arch. The objective of this study was to examine if Body Mass Index and the foot arch have a direct effect on dynamic peak plantar pressure for healthy subjects. Following a clinical lower limb examination, the Tekscan HR mat was utilised for this study, plantar pressure was profiled at specific events during stance phase of gait including heel strike, midstance and toe off. Results indicated to the preferable normal arch as this produced a low plantar pressure distribution in all cases. The 2nd and 3rd metatarsal head region recorded the highest pressure for all arch types during dynamic analysis. The lowest pressure for the normal and overweight BMI was at toe-off. While the obese BMI group showed highest pressure during toe-off. The obese BMI flat arch subcategory indicated to functional ambulation differences. Future work involves comparing this healthy database to a demographically matched diabetic group.
Źródło:
Acta of Bioengineering and Biomechanics; 2014, 16, 2; 131-135
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Medial longitudinal arch biomechanics evaluation during gait in subjects with flexible flatfoot
Autorzy:
Prachgosin, T.
Chong, D. Y. R.
Leelasamran, W.
Smithmaitrie, P.
Chatpun, S.
Powiązania:
https://bibliotekanauki.pl/articles/307263.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
biomechanika
chód
płaskostopie
biomechanics
gait
medial longitudinal arch
flat foot
Opis:
Purpose: Medial longitudinal arch (MLA) strengthening has been considered an important part of successful flatfoot treatment. But, to date, the biomechanical loading behavior of the medial arch in flatfoot has not been evaluated. This study aimed to evaluate the MLA moment, MLA deformation angle, foot kinematics and ground reaction forces (GRF) in both normal foot and flatfoot groups. Methods: Each participant’s foot was classified according to arch type using foot prints and radiographs. Twenty-eight non-obese adults (13 flatfeet and 15 normal feet) were involved. The biomechanics data were collected in a 3D motion analysis laboratory. The MLA biomechanics were calculated. Hindfoot and forefoot kinematics were also analyzed. Results: The flatfoot group had a significantly greater peak eversion MLA moment ( p = 0.005) and a smaller peak MLA deformation angle ( p < 0.05) during specific subphases. The peak of hindfoot plantarflexion ( p < 0.05) and internal rotation ( p < 0.05) and the peak of forefoot abduction ( p < 0.05) in the specific subphases were greater in the flatfoot group. The flatfoot group also had significantly smaller peak vertical GRF ( p < 0.05) during late stance and larger peak medial GRF ( p < 0.05) during mid stance. Conclusions: This study found a significantly greater eversion deforming force acting at the MLA structure, greater hindfoot and forefoot motion, less MLA flexibility and abnormal GRF in a flatfoot group during walking, which reflected the deficit of foot function in a flatfoot group.
Źródło:
Acta of Bioengineering and Biomechanics; 2015, 17, 4; 121-130
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The effect of aging and gender on plantar pressure distribution during the gait in elderly
Autorzy:
Gimunova, M.
Zvonař, M.
Mikeska, O.
Powiązania:
https://bibliotekanauki.pl/articles/307400.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
osoba starsza
chód
rozkład ciśnienia
stopa
elderly
gait
arch index
pressure distribution
foot progression angle
hallux angle
Opis:
The effect of age on structural foot characteristics as well as on the plantar pressure distribution has been shown previously. However, the number of studies focused also on gender gait differences of elderly is lacking. The purpose of this study was to compare dynamic gait characteristic in younger and older elderly and to investigate the gender differences as the life-long load and footwear choice differ in males and females. Methods: 61 healthy elderly participants were divided by age and gender into four groups: males 60–69, males 70–79, females 60–69 and females 70–79 years old. Plantar pressures were recorded during barefoot walking at naturally chosen speed using Emed-at (Novel GmbH, Germany). Three steps of the left foot of each participant were used for further analysis, furthermore, hallux angle, foot progression angle, and arch index were calculated by the Emed software from obtained footprints. To compare the differences between the analyzed groups, effect size obtained by Cohen’s d was used. Results: Comparing the two age male groups, higher mean pressure was found in the 70–79 age group in region MH4, MH5 and mid-foot, suggesting a greater lateral load and decreased longitudinal arch of the foot. Comparing female groups, the higher mean pressure was found in the older age group in region MH1. In all other regions, the mean pressures were reduced in the older groups. Conclusions: The results suggest that the effect of aging on plantar pressure distribution during the gait is affected by gender and should be considered when evaluating the gait of elderly.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 3; 139-144
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies