Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ivanov, A. A." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Patient-specific hemodynamics and stress-strain state of cerebral aneurysms
Autorzy:
Ivanov, D.
Dol, A.
Polienko, A.
Powiązania:
https://bibliotekanauki.pl/articles/306900.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
materiał hipersprężysty
symulacja numeryczna
naprężenie efektywne
przepływ krwi
tętniak
hyperelastic material
numerical simulation
effective stress
blood flow
cerebral aneurysm
Opis:
Purpose: Approximately 5% of the adult population has one or more cerebral aneurysm. Aneurysms are one of the most dangerous cerebral vascular pathologies. Aneurysm rupture leads to a subarachnoid hemorrhage with a very high mortality rate of 45–50%. Despite the high importance of this disease there are no criteria for assessing the probability of aneurysm rupture. Moreover, mechanisms of aneurysm development and rupture are not fully understood until now. Methods: Biomechanical and numerical computer simulations allow us to estimate the behavior of vessels in normal state and under pathological conditions as well as to make a prediction of their postoperative state. Biomechanical studies may help clinicians to find and investigate mechanical factors which are responsible for the initiation, growth and rupture of the cerebral aneurysms. Results: In this work, biomechanical and numerical modeling of healthy and pathological cerebral arteries was conducted. Patient-specific models of the basilar and posterior cerebral arteries and patient-specific boundary conditions at the inlet were used in numerical simulations. A comparative analysis of the three vascular wall models (rigid, perfectly elastic, hyperelastic) was performed. Blood flow and stress-strain state of the two posterior cerebral artery aneurysm models was compared. Conclusions: Numerical simulations revealed that hyperelastic material most adequately and realistically describes the behavior of the cerebral vascular walls. The size and shape of the aneurysm have a significant impact on the blood flow through the affected vessel and on the effective stress distribution in the aneurysm dome. It was shown that large aneurysm is more likely to rupture than small aneurysm.
Źródło:
Acta of Bioengineering and Biomechanics; 2016, 18, 2; 9-17
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of human circle of Willis with and without aneurisms
Autorzy:
Ivanov, D.
Dol, A.
Pavlova, O.
Aristambekova, A.
Powiązania:
https://bibliotekanauki.pl/articles/307003.pdf
Data publikacji:
2014
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
3D design
aneurysm
circle of Willis
hyperelastic material
mathematical modelling
mechanical tests
3D
model matematyczny
materiał hiperelastyczny
Opis:
Purpose: This paper includes results of the first stage of research aimed at the development of recommendations for physicians in order to help them to choose a particular type of cerebral arteries aneurysms treatment. Methods: Recent studies show that the majority of aneurysms develop as a result of hemodynamic and degenerative lesions of the vascular wall. Obviously, such wall damage can be studied using the methods of continuum mechanics and numerical simulations. Biomechanical modelling allows us to study hemodynamic parameters and stress-strain state of these arteries in health and disease, and to formulate practical recommendations for the necessity and reasonable selection of a particular type of cerebral arteries aneurysm treatment. Results: At this stage the realistic geometric models of arterial circle of Willis were built for its normal state and in the presence of aneurysms. The ultrasound analysis of circle of Willis was conducted in order to obtain blood flow parameters and the boundary conditions for carotid and vertebral arteries. Also, the mechanical properties of these arteries were investigated and constants of the Mooney–Rivlin strain energy function were obtained. Conclusions: Thus, the boundary problem describing the behaviour of human Willis circle arteries was stated. Further, this problem will be solved numerically using the finite element method. The numerical results will be analyzed from the point of view of the influence of the mechanical factors on the emergence, growth and rupture of circle of Willis aneurysms.
Źródło:
Acta of Bioengineering and Biomechanics; 2014, 16, 2; 121-129
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A numerical comparative analysis of ChM and Fixion nails for diaphyseal femur fractures
Autorzy:
Ivanov, D.
Barabash, Y.
Barabash, A.
Powiązania:
https://bibliotekanauki.pl/articles/306299.pdf
Data publikacji:
2016
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
FEM
gwóźdź śródszpikowy
kość udowa
sztywność
model 3D
finite element analysis
intramedullary nail
femur
effective stress
stiffness
3D model
Opis:
Purpose: Today intramedullary locked nails are widespread in treatment of diaphyseal long bone fractures of the lower limb. However, such nails have a number of drawbacks: complexity and duration of the installation, high axial stiffness, as well as the failure of locking screws and nail body. Expandable nails such as Fixion have several advantages over lockable ones. They can be quickly installed without the need of reaming and provide sufficient stabilization of the fracture. However, many studies show their low stability under torsional loads. Methods: In this paper, geometric characteristics of Fixion nail were investigated. Bone-nail systems (with Fixion and locked nail) under the influence of three types of loads were numerically studied. Two types of diaphyseal femoral fractures (type A and B in accordance with AO/ASIF classification) were examined. Results: It was revealed that Fixion nail provides axial stiffness of 489 N/mm for the fractures studied. Expandable nail showed higher compression at fragments junction than locked nail. Torsional stability of Fixion nail was also high. Corrosion was found on inner surface of Fixion nail. Conclusions: Fixion nail showed high stability under influence of the three loads studied. Corrosion on the internal wall of the nail may indicate its relatively low resistance to saline.
Źródło:
Acta of Bioengineering and Biomechanics; 2016, 18, 3; 73-81
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies