Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dobrzynski, M." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
The evaluation of resorbable haemostatic wound dressings in contact with blood in vitro
Autorzy:
Szymonowicz, M.
Kucharska, M.
Wiśniewska-Wrona, M.
Dobrzyński, M.
Kołodziejczyk, K.
Rybak, Z.
Powiązania:
https://bibliotekanauki.pl/articles/306978.pdf
Data publikacji:
2017
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
opatrunek
chitozan
alginian
mikrofibrydy
nanofibrydy
hemoliza
haemostatic
dressing
chitosan-alginate
nanofibrids
microfibrids
haemolysis
plasmatic clotting system
Opis:
Purpose: For many years research has been conducted on the development of resorbable, polymer, haemostatic materials designed to provide first aid and preliminary protection of injuries. The biological properties in vitro of a dressing in powder form called Hemoguard are expected to provide the ability to instantaneously stem bleeding with safe conditions of use. The aim of the study was to evaluate the haemostatic properties of a model of dressing based on micro- and nanofibrids of the chitosan, sodium/calcium alginate and/or carboxymethylcellulose complex. Dressings were prepared by spray-drying and freeze-drying. Methods: Human whole blood was subjected to timed contact with the haemostatic dressing model. Haemolytic action was determined by assaying the degree of haemolysis and evaluating blood cell morphology. Haemostatic action was determined on the basis of selected parameters of plasmatic clotting systems. Results: Dressings prepared by freeze-drying activated the coagulation system. The haemolytic index, plasma haemoglobin concentration values and blood cell morphological shapes were normal. Dressings prepared by spray-drying significantly activated coagulation. Activation of the coagulation process was evidenced by shorter clotting time of the plasma coagulation system and a longer process of clot formation. The dressing was associated with an increased haemolytic index and higher plasma haemoglobin concentration. The morphological shape of blood cells changed. Conclusions: The model of multi-resorbable wound dressings has haemostatic properties. The materials activate the clotting process more quickly than a single-dressing model. Increased activity was found for dressings prepared by spray-drying.
Źródło:
Acta of Bioengineering and Biomechanics; 2017, 19, 1; 151-165
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone
Autorzy:
Turek, A.
Kasperczyk, J.
Jelonek, K.
Borecka, A.
Janeczek, H.
Libera, M.
Gruchlik, A.
Dobrzyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/306678.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
rysperydon
nośnik leków
morfologia
właściwości cieplne
risperidone
drug carriers
degradation
thermal properties
morphology
Opis:
Determining thermal properties and morphology seems to be useful in the analysis of release and degradation processes form polymeric materials. Risperidone is available in the formulation of a long-acting injection based on poly(D,L-lactide-co-glycolide). Currently, alternative solutions are also offered, i.e., nano- and microparticles or implants, including copolymers of lactide and glycolide. The effect of risperidone content on the properties of poly(L-lactide-co-glycolide) matrices was determined. The study also involved an assessment of the changes during degradation. Risperidone free matrices and the matrices with risperidone were obtained by solvent casting. Thermal characteristics were tested by means of differential scanning calorimetry, and the morphology was evaluated using a scanning electron microscope. Risperidone did not change significantly semi-crystalline structure of poly(L-lactide-co-glycolide) matrices. The decrease in crystallization temperature and glass transition temperature during degradation was observed. Many pores and their deformation, the widening of pore area, cracks and slits because of degradation were observed. The analysis of thermal properties and morphology allowed us to explain degradation process. Matrices exhibited stable process of degradation, which may be advantageous for development of prolonged risperidone release systems.
Źródło:
Acta of Bioengineering and Biomechanics; 2015, 17, 1; 11-20
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications
Autorzy:
Kotlarz, M.
Jordan, R.
Wegner, E.
Dobrzyński, P.
Neunzehn, J.
Lederer, A.
Wolf-Brandstetter, C.
Pamula, E.
Scharnweber, D.
Powiązania:
https://bibliotekanauki.pl/articles/306484.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
druk 3D
PLGA
węglan wapnia
właściwości powierzchniowe
3D printing
calcium carbonate
amphiphilic poly(2-oxazoline)
degradation
surface properties
Opis:
A successful approach widely used in materials science to adapt approved materials to specific applications is to design their surface properties. A main challenge in this area is the development of processing routes enabling for a simple but efficient surface design of complex shaped geometries. Against this background, this work aimed at the implementation of self-assembly principles for surface functionalization of 3D-printed poly(lactic-co-glycolic acid) (PLGA)-based constructs with macro- and microporous geometries via precision extruding deposition. Methods: Three-component melts from PLGA, CaCO3 and amphiphilic polymers (poly(2-oxazoline) block copolymer) were printed and their bulk and surface properties were studied. Results: Melts with up to 30 mass % of CaCO3 could be successfully printed with homogeneously distributed mineral particles. PLGA degradation during the printing process was temperature and time dependent: the molecular weight reached 10 to 15% of the initial values after ca. 120 min of heat exposure. Filament surfaces from melts containing CaCO3 show an increasing microroughness along with increasing CaCO3 content. Surface roughness and amphiphilic polymer content improve scaffold wettability with both factors showing synergistic effects. The CaCO3 content of the melts affected the inner filament structure during in vitro degradation in PBS, resulting in a homogeneous mineral particle-associated microporosity for mineral contents of 20 mass % and above. Conclusions: These results provide novel insights into the behavior of three-component melts from PLGA, CaCO3 and amphiphilic polymers during precision extruding deposition and show for the first time that self-assembly processes can be used to tailor scaffolds surface properties under such processing conditions.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 2; 35-45
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies