Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Dobrzynski, J." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Thermographic evaluation of experimental pleurisy induced by carrageenan and modified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
Autorzy:
Kuropka, Piotr
Dobrzyński, Maciej
Tarnowska, Małgorzata
Dymarek, Robert
Leśków, Anna
Wiglusz, Rafał J.
Powiązania:
https://bibliotekanauki.pl/articles/307203.pdf
Data publikacji:
2019
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
termografia
zapalenie opłucnej
TCDD
thermography
pleurisy
rats
Opis:
The use of a thermal imaging camera may improve the detection of changes during inflammation process propagation in animals and humans that could be caused by numerous factors like 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Methods: Rats were randomised and divided into two groups, C group, in which experimental pleural inflammatory reaction was evoked and TCDD group, in which a single dose was applied 21 days before administration of 1% carrageenan solution. Infrared thermograms were taken with a microbolometer thermal imaging camera MobIR M8. The surface temperature distribution was measured in three randomly selected animals. Results: In the analysis of correlation we found negative results between both groups. In the C group, the pleurisy was developed and allowed to develop freely. It can be observed that both the average maximum temperature and the average minimum temperature were the highest after 48 hours after injection of the 1% carrageenan in solution. In TCDD group, lowered temperature in all days of experiments was noted. However, the increase of temperature after carrageenan injection was similar. The main changes observed in the lungs were oedema, hyperemia with clot formation and changes in lung structure. Several proliferative changes in the lungs were noted. Moreover, increased number of goblet cells as well and increased release of the surfactant was observed. The activation of fibroblasts and synthesis of collagen fibers was noted. Conclusions: The TCDD administration results in the reduction of superficial temperature, which is easily detectable by thermal imaging camera that can be effectively used in monitoring the course of inflammation.
Źródło:
Acta of Bioengineering and Biomechanics; 2019, 21, 3; 23-29
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Thermal properties and morphology changes in degradation process of poly(L-lactide-co-glycolide) matrices with risperidone
Autorzy:
Turek, A.
Kasperczyk, J.
Jelonek, K.
Borecka, A.
Janeczek, H.
Libera, M.
Gruchlik, A.
Dobrzyński, P.
Powiązania:
https://bibliotekanauki.pl/articles/306678.pdf
Data publikacji:
2015
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
rysperydon
nośnik leków
morfologia
właściwości cieplne
risperidone
drug carriers
degradation
thermal properties
morphology
Opis:
Determining thermal properties and morphology seems to be useful in the analysis of release and degradation processes form polymeric materials. Risperidone is available in the formulation of a long-acting injection based on poly(D,L-lactide-co-glycolide). Currently, alternative solutions are also offered, i.e., nano- and microparticles or implants, including copolymers of lactide and glycolide. The effect of risperidone content on the properties of poly(L-lactide-co-glycolide) matrices was determined. The study also involved an assessment of the changes during degradation. Risperidone free matrices and the matrices with risperidone were obtained by solvent casting. Thermal characteristics were tested by means of differential scanning calorimetry, and the morphology was evaluated using a scanning electron microscope. Risperidone did not change significantly semi-crystalline structure of poly(L-lactide-co-glycolide) matrices. The decrease in crystallization temperature and glass transition temperature during degradation was observed. Many pores and their deformation, the widening of pore area, cracks and slits because of degradation were observed. The analysis of thermal properties and morphology allowed us to explain degradation process. Matrices exhibited stable process of degradation, which may be advantageous for development of prolonged risperidone release systems.
Źródło:
Acta of Bioengineering and Biomechanics; 2015, 17, 1; 11-20
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
One step 3D printing of surface functionalized composite scaffolds for tissue engineering applications
Autorzy:
Kotlarz, M.
Jordan, R.
Wegner, E.
Dobrzyński, P.
Neunzehn, J.
Lederer, A.
Wolf-Brandstetter, C.
Pamula, E.
Scharnweber, D.
Powiązania:
https://bibliotekanauki.pl/articles/306484.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
druk 3D
PLGA
węglan wapnia
właściwości powierzchniowe
3D printing
calcium carbonate
amphiphilic poly(2-oxazoline)
degradation
surface properties
Opis:
A successful approach widely used in materials science to adapt approved materials to specific applications is to design their surface properties. A main challenge in this area is the development of processing routes enabling for a simple but efficient surface design of complex shaped geometries. Against this background, this work aimed at the implementation of self-assembly principles for surface functionalization of 3D-printed poly(lactic-co-glycolic acid) (PLGA)-based constructs with macro- and microporous geometries via precision extruding deposition. Methods: Three-component melts from PLGA, CaCO3 and amphiphilic polymers (poly(2-oxazoline) block copolymer) were printed and their bulk and surface properties were studied. Results: Melts with up to 30 mass % of CaCO3 could be successfully printed with homogeneously distributed mineral particles. PLGA degradation during the printing process was temperature and time dependent: the molecular weight reached 10 to 15% of the initial values after ca. 120 min of heat exposure. Filament surfaces from melts containing CaCO3 show an increasing microroughness along with increasing CaCO3 content. Surface roughness and amphiphilic polymer content improve scaffold wettability with both factors showing synergistic effects. The CaCO3 content of the melts affected the inner filament structure during in vitro degradation in PBS, resulting in a homogeneous mineral particle-associated microporosity for mineral contents of 20 mass % and above. Conclusions: These results provide novel insights into the behavior of three-component melts from PLGA, CaCO3 and amphiphilic polymers during precision extruding deposition and show for the first time that self-assembly processes can be used to tailor scaffolds surface properties under such processing conditions.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 2; 35-45
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies