Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Stem Cells" wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
Resorbable scaffolds modified with collagen type I or hydroxyapatite : in vitro studies on human mesenchymal stem cells
Autorzy:
Rumian, Ł.
Wojak, I.
Scharnweber, D.
Pamuła, E.
Powiązania:
https://bibliotekanauki.pl/articles/307304.pdf
Data publikacji:
2013
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
collagen type I
human mesenchymal stem cells
hydroxyapatite
poly(L-lactide-co-glycolide)
scaffolds
kolagen
hydroksyapatyt
mezenchyma
Opis:
Poly(L-lactide-co-glycolide) (PLGA) scaffolds of pore size within the range of 250–320 μm were produced by solvent casting/ porogen leaching method. Afterwards, they were modified through adsorption of collagen type I and incubation in simulated body fluid (SBF) to allow deposition of hydroxyapatite (HAp). The wettability of the scaffolds was measured by sessile drop test. Scanning electron microscopy (SEM) evaluation and energy dispersive X-ray analysis (EDX) were also performed. SEM evaluation and EDX analysis depicted the presence of HAp deposits and a collagen layer on the pore walls on the surface and in the bulk of the scaffolds. Wettability and water droplets penetration time within the scaffolds decreased considerably after applying modifications. Human mesenchymal stem cells (hMSC) were cultured on the scaffolds for 28 days and cell morphology, proliferation and differentiation as well as calcium deposition were evaluated. Lactate dehydrogenase (LDH) activity results revealed that cells cultured on tissue culture polystyrene (TCPS) exhibited high proliferation capacity. Cell growth on the scaffolds was slower in comparison to TCPS and did not depend on modification applied. On the other hand, osteogenic differentiation of hMSC as confirmed by alkaline phosphatase (ALP) activity and mineralization results was enhanced on the scaffolds modified with hydroxyapatite and collagen.
Źródło:
Acta of Bioengineering and Biomechanics; 2013, 15, 1; 61-67
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits
Autorzy:
Tang, L.
Yang, Y.
Li, Y.
Yang, G.
Luo, T.
Xue, Y.
Zhang, W.
Powiązania:
https://bibliotekanauki.pl/articles/306523.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
ścięgno Achillesa
kolagen
komórki macierzyste
szpik kostny
Bombyx mori silk
regenerated silk fibroin
collagen I
bone marrow-derived mesenchymal stem cells
weft-knit
Achilles tendon action
Opis:
A scaffold knit with natural sericin-free silk fibroin fiber possesses desirable mechanical properties, biocompatibility, ease of fabrication, and slow degradability. However, regenerated silk fibroin degrades faster than natural silk. In this study, natural silk fibroin fiber mesh-like scaffolds were prepared by a weft-knitting method and the pores were filled with sponge-like regenerated silk fibroin-collagen I. The microporous sponge and mesh-like scaffolds were fused to achieve gradient degradation of the scaffolds, and rabbit bone marrow mesenchymal stem cells (BMSCs) were seeded onto the scaffolds to form scaffold–BMSCs composites. The composites were implanted into gap defects made in the rabbit Achilles tendon. Twenty weeks after implantation, histological observation showed that tendon-like tissue had formed, collagen I mRNA was expressed, abundant collagen was generated, and that there was no obvious degradation of silk. The maximum load of the neo-Achilles tendon was 62.14% that of the natural Achilles tendon. These outcomes were superior to those obtained in the group implanted with a scaffold without BMSCs. These findings suggest the feasibility of constructing tissue-engineered tendons using weft-knitted silk scaffolds incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with BMSCs, and show potential of the scaffold–BMSCs composites to repair Achilles tendon defects.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 3; 77-87
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of differentiation time of mesenchymal-stem-cell to tenocyte under a cyclic stretching with a microgrooved culture membrane and selected measurement cells
Autorzy:
Morita, Y.
Yamashita, T.
Toku, Y.
Yu, Y.
Powiązania:
https://bibliotekanauki.pl/articles/307018.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
różnicowanie
kości
stymulacja mechaniczna
hBMSC
cyclic stretch
differentiation
differentiation time
human bone marrow-derived mesenchymal stem cell
mechanical stimulus
tenocyte
Opis:
There is a need for efficient stem cell-to-tenocyte differentiation techniques for tendon tissue engineering. More than 1 week is required for tenogenic differentiation with chemical stimuli, including co-culturing. Research has begun to examine the utility of mechanical stimuli, which reduces the differentiation time to several days. However, the precise length of time required to differentiate human bone marrow-derived mesenchymal stem cells (hBMSCs) into tenocytes has not been clarified. Understanding the precise time required is important for future tissue engineering projects. Therefore, in this study, a method was developed to more precisely determine the length of time required to differentiate hBMSCs into tenocytes with cyclic stretching stimulus. Methods: First, it had to be determined how stretching stimulation affected the cells. Microgrooved culture membranes were used to suppress cell orientation behavior. Then, only cells oriented parallel to the microgrooves were selected and evaluated for protein synthesis levels for differentiation. Results: The results revealed that growing cells on the microgrooved membrane and selecting optimally-oriented cells for measurement improved the accuracy of the differentiation evaluation, and that hBMSCs differentiated into tenocytes in approximately 10 h. Conclusions: The differentiation time corresponded to the time required for cellular cytoskeleton reorganization and cellular morphology alterations. This suggests that cells, when subjected to mechanical stimulus, secrete mRNAs and proteins for both cytoskeleton reorganization and differentiation.
Źródło:
Acta of Bioengineering and Biomechanics; 2018, 20, 1; 3-10
1509-409X
2450-6303
Pojawia się w:
Acta of Bioengineering and Biomechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies