Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bayesian updating" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Dynamic Bayesian Inference in GARCH Processes with Skewed-t and Stable Conditional Distributions
Dynamiczne wnioskowanie bayesowskie w procesach GARCH ze skośnymi í-Studenta i stabilnym rozkładem warunkowym
Autorzy:
Pipień, Mateusz
Powiązania:
https://bibliotekanauki.pl/articles/907589.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
stable distributions
skewed-t distributions
Bayesian updating
univariate GARCH
Opis:
In AR(1)-GARCH(1, 1) framework for daily returns, proposed and adopted by Bauwens and Lubrano (1997), Bauwens et al. (1999), Osiewalski and Pipień (2003), we considered two types of conditional distribution. In the first model (M₁,) we assumed conditionally skewed-i distribution (defined by Fernandez and Steel 1998) while the second GARCH specification (M₂) is based on the conditional stable distribution. We present Bayesian updating technique in order to check sensitivity of the posterior probabilities of considered specifications with respect to new observations included into dataset. We also study differences between Bayesian inference about tails and asymmetry of the conditional distribution of daily returns and between one-day predictive densities of growth rates obtained from both models. The results of dynamic Bayesian estimation, prediction and comparison of explanatory power of models M₁, and M₂ are based on very volatile daily growth rates of the WIBOR one-month interest rates and daily returns on the PLN/USD exchange rate.
W artykule przedstawiono modele AR(1)-GARCH(1,1) dla dziennych stóp zmian (por. Bauwens i Lubrano 1997, Bauwens i in. 1999, Osiewalski i Pipień 2003) z różnymi typami rozkładu warunkowego. W pierwszym przypadku (model M₁) rozważono warunkowy rozkład skośny t-studenta (zdefiniowany przez Fernández i Steela 1998), podczas gdy model M₂ to proces GARCH o warunkowym rozkładzie α-stabilnym. Prezentujemy bayesowską aktualizację rozkładów a posteriori i predyktywnych (wraz z napływem nowych danych) w celu zbadania, czy typ rozkładu warunkowego zadany w procesie GARCH wpływa na wnioskowanie o naturze procesów opisujących zmienność finansowych szeregów czasowych o dużej częstotliwości. Rezultaty dynamicznej estymacji wykorzystującej podejście bayesowskie zilustrowano na przykładzie dwóch szeregów czasowych, tzn. dziennych stóp zmian kursu walutowego PLN/USD oraz oprocentowań jednomiesięcznych lokat międzybankowych (WIBORlm).
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2005, 192
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies