Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "spatial regression model" wg kryterium: Wszystkie pola


Wyświetlanie 1-2 z 2
Tytuł:
Bayesian Spatial Quantile Regression
Bayesowska przestrzenna regresja kwantylowa
Autorzy:
Trzpiot, Grażyna
Powiązania:
https://bibliotekanauki.pl/articles/904804.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
quantile regression
spatial quantile regression
bayesian spatial model
Opis:
In this paper we present a Bayesian spatial model quantile regression. We develop a spatial quantile regression model that does not assume normality and allows the covariates to affect the entire conditional distribution, rather than just the mean. The conditional distribution is allowed to vary from site-to-site and is smoothed with a spatial prior.
W wielu zastosowaniach, podstawowym problemem jest opis i analiza wpływu wektora skorelowanych zmiennych objaśniających X na zmienna objaśnianą Y. W przypadku, gdy obserwacje badanych zmiennych są dodatkowo rozmieszczone przestrzennie, zadanie jest jeszcze trudniejsze, ponieważ mamy dodatkowe zależności, wynikające ze zmienności przestrzennej. Klasyczne podejście stosowane do takich problemów wykorzystuje założenie o skończonej wartości oczekiwanej zmiennych Y, wówczas przestrzenna funkcja regresji jest dobrze określona i dostarcza informacji o zależności zmiennej Y od zmiennych X. W tej pracy, w miejsce przestrzenna funkcja regresji wykorzystującej średnią, rozpatrzymy przestrzenna regresję kwantylową. Regresja kwantylowa zostanie omówiona w przestrzennym kontekście. Semiparametryczny model bayesowski i jego estymacja jest głównym celem tej pracy. Dodatkowe zasoby informacji o zmienności otrzymujemy badając kwantyle, wychodząc poza tradycyjny opis klasycznej regresji. Estymacja kwantylowa w modelu przestrzennym uwydatnia zależności przestrzenne dla różnych fragmentów rozważanych rozkładów.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2013, 286
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Application of Spatial Regression in Employment Characteristics Modelling
Zastosowanie regresji przestrzennej do modelowania charakterystyk zatrudnienia
Autorzy:
Pośpiech, Ewa Katarzyna
Mastalerz-Kodzis, Adrianna
Powiązania:
https://bibliotekanauki.pl/articles/660037.pdf
Data publikacji:
2018
Wydawca:
Uniwersytet Łódzki. Wydawnictwo Uniwersytetu Łódzkiego
Tematy:
modelowanie przestrzenne
model błędu przestrzennego
model opóźnienia przestrzennego
zatrudnienie
spatial modelling
spatial error model
spatial lag model
employment
Opis:
W artykule analizowano zagadnienie poziomu zatrudnienia. Zbadano stopę zatrudnienia w wybranych regionach Europy, a następnie dla wybranych zmiennych – ludność pracująca ogółem, pracujące kobiety oraz pracujący mężczyźni – zbudowano klasyczne modele ekonometryczne i zweryfikowano konieczność uwzględnienia w modelowaniu badanego zjawiska czynnika przestrzennego. Jako zmienne objaśniające modelu wybrano zmienne demograficzne oraz PKB na mieszkańca. Badano, czy uwzględnienie w konstrukcji modeli podejścia przestrzennego poprawi ich jakość. W rozważaniach wzięto pod uwagę dwa podstawowe modele przestrzenne – model błędu przestrzennego oraz model opóźnienia przestrzennego, spośród których ten pierwszy okazał się dobrym narzędziem analiz.
The article analyses the employment characteristics. The employment rate was studied in selected regions of Europe, and subsequently, for selected variables: total population employed, women employed and men employed, classic econometric models were constructed and the necessity of including the spatial factor in the process of modelling was verified. The demographic variables and GDP per capita were chosen as explaining variables of the model. It was analysed whether including a spatial approach in the models would improve their quality. Two basic spatial models were taken into consideration: the spatial error model and the spatial lag model, the former of which turned out to be the right tool for the analyses.
Źródło:
Acta Universitatis Lodziensis. Folia Oeconomica; 2018, 3, 335; 63-74
0208-6018
2353-7663
Pojawia się w:
Acta Universitatis Lodziensis. Folia Oeconomica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies