Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Wang, J.L." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Influence of selenium on growth, lipid peroxidation and antioxidative enzyme activity in melon (Cucumis melo L.) seedlings under salt stress
Autorzy:
Hu, K.L.
Zhang, L.
Wang, J.T.
You, Y.
Powiązania:
https://bibliotekanauki.pl/articles/58727.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
selenium
plant growth
lipid peroxidation
antioxidative enzyme
enzyme activity
melon
Cucumis melo
seedling
salt stress
Opis:
The objective of this study was to investigate the effect of exogenous selenium (Se) supply (0, 2, 4, 8, 16 μM) on the growth, lipid peroxidation and antioxidative enzyme activity of 100 mM NaCl-stressed melon (Cucumis melo L.) seedlings. Salt stress significantly reduced the growth attributes including stem length, stem diameter, dry weight and increased antioxidative enzyme activity [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT)]. Moreover, the plant exhibited a significant increase in electrolyte leakage and malondialdehyde (MDA) content under NaCl stress. Se supplementation not only improved the growth parameters but also successfully ameliorated the adverse effect caused by salt stress in melon seedlings. However, the mitigation of NaCl-stressed seedlings was different depending on the Se concentration. At lower concentrations (2–8 μM), Se improved growth and acted as antioxidant by inhibiting lipid peroxidation and increasing in SOD and POD enzymes activity under salt stress. At higher concentrations (16 μM), Se exerted diminished beneficial effects on growth. Whereas CAT activity was enhanced. The result indicated that Se supplementation had a positive physiological effect on the growth and development of salt-stressed melon seedlings.
Źródło:
Acta Societatis Botanicorum Poloniae; 2013, 82, 3
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of the transcriptome of Potentilla sericea under cadmium stress conditions
Autorzy:
Wu, J.
Fan, W.
Gao, P.
Yang, Q.
Zhang, J.
Wang, L.
Powiązania:
https://bibliotekanauki.pl/articles/2130579.pdf
Data publikacji:
2021
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
glutathione metabolism
sulfur metabolism
Opis:
Cadmium (Cd) stress significantly affects plant growth and development. Potentilla sericea is typically grown in gardens or as ground cover. In this study, the Cd response of P. sericea was analyzed based on physiological examinations and transcriptome analyses that uncovered the gene expression changes in P. sericea roots induced by a 7-day treatment with 90 μmol/L Cd2+. A total of 53,225 unigenes were identified, including 11,684 differentially expressed genes (DEGs; 8,083 upregulated and 3,601 downregulated). Additionally, 44 gene ontology terms and 127 Kyoto Encyclopedia of Genes and Genomes pathways were significantly enriched among these DEGs. Genes related to glutathione metabolism, plant hormone signal transduction, peroxisome processes, sulfur metabolism, and flavonoid biosynthesis pathways were confirmed as relevant to the Cd response of P. sericea. The molecular biology-related data described here may be useful for the future breeding of transgenic P. sericea plants with increased resistance to heavy metal stresses.
Źródło:
Acta Societatis Botanicorum Poloniae; 2020, 89, 4
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Influence of heat stress on leaf morphology and nitrogen–carbohydrate metabolisms in two wucai (Brassica campestris L.) genotypes
Autorzy:
Yuan, L.
Tang, L.
Zhu, S.
Hou, J.
Chen, G.
Liu, F.
Liu, S.
Wang, C.
Powiązania:
https://bibliotekanauki.pl/articles/56883.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Botaniczne
Opis:
Heat stress is a major environmental stress that limits plant growth and yield worldwide. The present study was carried out to explore the physiological mechanism of heat tolerant to provide the theoretical basis for heat-tolerant breeding. The changes of leaf morphology, anatomy, nitrogen assimilation, and carbohydrate metabolism in two wucai genotypes (WS-1, heat tolerant; WS-6, heat sensitive) grown under heat stress (40°C/30°C) for 7 days were investigated. Our results showed that heat stress hampered the plant growth and biomass accumulation in certain extent in WS-1 and WS-6. However, the inhibition extent of WS-1 was significantly smaller than WS-6. Thickness of leaf lamina, upper epidermis, and palisade mesophyll were increased by heat in WS-1, which might be contributed to the higher assimilation of photosynthates. During nitrogen assimilation, WS-1 possessed the higher nitrogen-related metabolic enzyme activities, including nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase (GOGAT), and glutamate dehydrogenase (GDH), which were reflected by higher photosynthetic nitrogen-use efficiency (PNUE) with respect to WS-6. The total amino acids level had no influence in WS-1, whereas it was reduced in WS-6 by heat. And the proline contents of both wucai genotypes were all increased to respond the heat stress. Additionally, among all treatments, the total soluble sugar content of WS-1 by heat got the highest level, including higher contents of sucrose, fructose, and starch than those of WS-6. Moreover, the metabolism efficiency of sucrose to starch in WS-1 was greater than WS-6 under heat stress, proved by higher activities of sucrose phosphate synthase (SPS), sucrose synthase (SuSy), acid invertase (AI), and amylase. These results demonstrated that leaf anatomical alterations resulted in higher nitrogen and carbon assimilation in heat-tolerant genotype WS-1, which exhibited a greater performance to resist heat stress.
Źródło:
Acta Societatis Botanicorum Poloniae; 2017, 86, 2
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Identification of medicinal plant Schisandra chinensis using a potential DNA barcode ITS2
Autorzy:
Li, X.-K.
Wang, B.
Han, R.-C.
Zheng, Y.-C.
Yin, H.-B.
Xu, L.
Zhang, J.-K.
Xu, B.-L.
Powiązania:
https://bibliotekanauki.pl/articles/56996.pdf
Data publikacji:
2013
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
identification
internal transcribed spacer
medicinal plant
Schisandra chinensis
DNA barcode
Opis:
To test whether the internal transcribed spacer 2 (ITS2) region is an effective marker for using in authenticating of the Schisandra chinensis at the species and population levels, separately. And the results showed that the wild populations had higher percentage of individuals that had substitution of C→A at site 86-bp than the cultivated populations. At sites 10-bp, 37-bp, 42-bp and 235-bp, these bases of the Schisandra sphenanthera samples differed from that of S. chinensis. Two species showed higher levels of inter-specific divergence than intra-specific divergence within ITS2 sequences. However, 24 populations did not demonstrate much difference as inter-specific and intra-specific divergences were concerned. Both S. chinensis and S. sphenanthera showed monophyly at species level, yet the samples of different populations shown polyphyly at population level. ITS2 performed well when using BLAST1 method. ITS2 obtained 100% identification success rates at the species level for S. chinensis, with no ambiguous identification at the genus level for ITS2 alone. The ITS2 region could be used to identify S. chinensis and S. sphenanthera in the “Chinese Pharmacopoeia”. And it could also correctly distinguish 100% of species and 100% of genera from the 193 sequences of S. chinensis. Hence, the ITS2 is a powerful and efficient tool for species identification of S. chinensis.
Źródło:
Acta Societatis Botanicorum Poloniae; 2013, 82, 4
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies