Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Ma, C." wg kryterium: Wszystkie pola


Wyświetlanie 1-3 z 3
Tytuł:
EGTA, a calcium chelator, affects cell cycle and increases DNA methylation in root tips of Triticum aestivum L.
Autorzy:
Zhang, C.
Shi, W.
Ma, K.
Li, H.
Zhang, F.
Powiązania:
https://bibliotekanauki.pl/articles/57455.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Botaniczne
Opis:
In this study, when germinated Triticum aestivum L. seeds were treated with 0, 2, 4 and 6 mM ethyl glycol tetraacetic acid (EGTA), root growth was suppressed and the mitotic index decreased. These inhibitory effects were positively correlated with EGTA concentration. RT-PCR analysis revealed that the expression of several gene markers related to the G1/S transition of the cell cycle were significantly downregulated. Confocal microscopy of Fluo-3/AM-stained roots showed chelation of nearly all of the Ca2+ within the root meristematic regions. Both random amplified polymorphic DNA (RAPD) and coupled restriction enzyme digestion-random amplification (CRED-RA) techniques showed significant increases in the levels of genomic DNA polymorphisms and degree of DNA methylation. The study provides information concerning the impact of Ca²+) chelator, EGTA, on the growth, expression of cell cycle transition marker genes, and changes in DNA structure and methylation in the wheat roots.
Źródło:
Acta Societatis Botanicorum Poloniae; 2016, 85, 3
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Methyl jasmonate-induced accumulation of metabolites and transcriptional responses involved in triterpene biosynthesis in Siraitia grosvenorii fruit at different growing stages
Autorzy:
Zhang, K.
Luo, Z.
Guo, Y.
Mo, C.
Tu, D.
Ma, X.
Bai, L.
Powiązania:
https://bibliotekanauki.pl/articles/59180.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Botaniczne
Opis:
The cucurbitane-type triterpenoid glycosides, mogrosides, are the main active components of Siraitia grosvenorii fruit. Squalene and cucurbitadienol are among the intermediates of the biosynthetic pathway for the formation of cucurbitane-type triterpenoid backbones of mogrosides. It is recognized that the exogenous application of methyl jasmonate (MeJA) increases the accumulation of secondary metabolites in various plant species. Here, the effect of MeJA (50, 200, and 500 μM) on the accumulation of squalene and cucurbitadienol in the fruits of S. grosvenorii at 10, 20, and 30 days after flowering (DAF) was tested for the first time. Since mogroside II E is the main cucurbitane-type triterpenoid present at this time, its concentration was also determined. The results show that MeJA can indeed promote squalene and cucurbitadienol accumulation, the application of 500 μM MeJA at 30 DAF being optimal. The concentration of squalene and cucurbitadienol increased up to 0.43 and 4.71 μg/g dry weight (DW), respectively, both of which were 1.2-fold greater than that of the control. The content of mogroside II E increased by 15% over the untreated group. We subsequently analyzed the expression of key genes involved in the mogroside biosynthetic pathway, including the 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene (SgHMGR), squalene synthetase gene (SgSQS), cucurbitadienol synthase gene (SgCS), and cytochrome P450 (SgCYP450) with quantitative real-time PCR. The results showed that transcriptional levels of these genes were upregulated following the treatment described above. Additionally, their responses in the presence of MeJA was related to the concentration and timing of MeJA treatment.
Źródło:
Acta Societatis Botanicorum Poloniae; 2016, 85, 3
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
De novo sequencing and comparative transcriptome analysis of white petals and red labella in Phalaenopsis for discovery of genes related to flower color and floral differentiation
Autorzy:
Yang, Y.
Wang, J.
Ma, Z.
Sun, G.
Zhang, C.
Powiązania:
https://bibliotekanauki.pl/articles/58306.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Botaniczne
Tematy:
sequencing
RNA sequence
transcriptome
Phalaenopsis
gene
flower
colour
floral differentiation
diversity
Opis:
Phalaenopsis is one of the world’s most popular and important epiphytic monopodial orchids. The extraordinary floral diversity of Phalaenopsis is a reflection of its evolutionary success. As a consequence of this diversity, and of the complexity of flower color development in Phalaenopsis, this species is a valuable research material for developmental biology studies. Nevertheless, research on the molecular mechanisms underlying flower color and floral organ formation in Phalaenopsis is still in the early phases. In this study, we generated large amounts of data from Phalaenopsis flowers by combining Illumina sequencing with differentially expressed gene (DEG) analysis. We obtained 37 723 and 34 020 unigenes from petals and labella, respectively. A total of 2736 DEGs were identified, and the functions of many DEGs were annotated by BLAST-searching against several public databases. We mapped 837 up-regulated DEGs (432 from petals and 405 from labella) to 102 Kyoto Encyclopedia of Genes and Genomes pathways. Almost all pathways were represented in both petals (102 pathways) and labella (99 pathways). DEGs involved in energy metabolism were significantly differentially distributed between labella and petals, and various DEGs related to flower color and floral differentiation were found in the two organs. Interestingly, we also identified genes encoding several key enzymes involved in carotenoid synthesis. These genes were differentially expressed between petals and labella, suggesting that carotenoids may influence Phalaenopsis flower color. We thus conclude that a combination of anthocyanins and/or carotenoids determine flower color formation in Phalaenopsis. These results broaden our understanding of the mechanisms controlling flower color and floral organ differentiation in Phalaenopsis and other orchids.
Źródło:
Acta Societatis Botanicorum Poloniae; 2014, 83, 3
0001-6977
2083-9480
Pojawia się w:
Acta Societatis Botanicorum Poloniae
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies