- Tytuł:
- Quantum Flatland and Monolayer Graphene from a Viewpoint of Geometric Algebra
- Autorzy:
- Dargys, A.
- Powiązania:
- https://bibliotekanauki.pl/articles/1399317.pdf
- Data publikacji:
- 2013-10
- Wydawca:
- Polska Akademia Nauk. Instytut Fizyki PAN
- Tematy:
-
73.43.Cd
81.05.U-
03.65.Pm - Opis:
- Quantum mechanical properties of the graphene are, as a rule, treated within the Hilbert space formalism. However a different approach is possible using the geometric algebra, where quantum mechanics is done in a real space rather than in the abstract Hilbert space. In this article the geometric algebra is applied to a simple quantum system, a single valley of monolayer graphene, to show the advantages and drawbacks of geometric algebra over the Hilbert space approach. In particular, 3D and 2D Euclidean space algebras $ Cl_{3, 0}$ and $Cl_{2, 0}$ are applied to analyze relativistic properties of the graphene. It is shown that only three-dimensional $Cl_{3, 0}$ rather than two-dimensional $Cl_{2, 0}$ algebra is compatible with a relativistic flatland.
- Źródło:
-
Acta Physica Polonica A; 2013, 124, 4; 732-739
0587-4246
1898-794X - Pojawia się w:
- Acta Physica Polonica A
- Dostawca treści:
- Biblioteka Nauki