Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural systems" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Discrete Fractional Order Artificial Neural Network
Autorzy:
Sierociuk, D.
Sarwas, G.
Dzieliński, A.
Powiązania:
https://bibliotekanauki.pl/articles/386578.pdf
Data publikacji:
2011
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
sztuczne sieci neuronowe
systemy nieliniowe
artificial neural networks
nonlinear systems
Opis:
In this paper the discrete time fractional order artificial neural network is presented. This structure is proposed for simulating the dynamics of non-linear fractional order systems. In the second part of this paper several numerical examples are shown. The final part of the paper presents the discussion on the use of fractional or integer discrete time neural network for modelling and simulating fractional order non-linear systems. The simulation results show the advantages of the proposed solution over the classical (integer) neural network approach to modelling of non-linear fractional order systems.
Źródło:
Acta Mechanica et Automatica; 2011, 5, 2; 128-132
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Employment of neural network based classifier for intrusion detection
Autorzy:
Vaitsekhovich, L.
Golovko, V.
Powiązania:
https://bibliotekanauki.pl/articles/386338.pdf
Data publikacji:
2008
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
systemy wykrywania włamań
sieci neuronowe
intrusion detection systems (IDS)
neural networks
Opis:
Most current Intrusion Detection Systems (IDS) examine all data features to detect intrusion. Also existing intrusion detection approaches have some limitations, namely impossibility to process a large number of audit data for real-time operation, low detection and recognition accuracy. To overcome these limitations, we apply modular neural network models to detect and recognize attacks in computer networks. They are based on the combination of principal component analysis (PCA) neural networks and multilayer perceptrons (MLP). PCA networks are employed for important data extraction and to reduce high dimensional data vectors. We present two PCA neural networks for feature extraction: linear PCA (LPCA) and nonlinear PCA (NPCA). MLP is employed to detect and recognize attacks using feature-extracted data instead of original data. The proposed approaches are tested with the help of KDD-99 dataset. The experimental results demonstrate that the designed models are promising in terms of accuracy and computational time for real world intrusion detection.
Źródło:
Acta Mechanica et Automatica; 2008, 2, 4; 93-98
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A neural-fuzzy approach for fault diagnosis of hybrid dynamical systems: demonstration on three-tank system
Autorzy:
Achbi, Mohammed Said
Kechida, Sihem
Mhamdi, Lotfi
Dhouibi, Hedi
Powiązania:
https://bibliotekanauki.pl/articles/1837950.pdf
Data publikacji:
2021
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
hybrid dynamic systems
modelling
residual generation
evaluation
monitoring
fault diagnosis
neural - fuzzy approach
Opis:
This work is part of the diagnostic field of hybrid dynamic systems (HDS) whose objective is to ensure proper operation of industrial facilities. The study is initially oriented to the modelling approach dedicated to hybrid dynamical systems (HDS). The objective is to look for an adequate model encompassing both aspects (continuous and event). Then, fault diagnosis technique is synthesised using artificial intelligence (AI) techniques. The idea is to introduce a hybrid version combining neural networks and fuzzy logic for residual generation and evaluation. The proposed approach is then validated on three tank system. The modelling and diagnosis approaches are developed using MATLAB/Simulink environment.
Źródło:
Acta Mechanica et Automatica; 2021, 15, 1; 1-8
1898-4088
2300-5319
Pojawia się w:
Acta Mechanica et Automatica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies