- Tytuł:
- Employment of neural network based classifier for intrusion detection
- Autorzy:
-
Vaitsekhovich, L.
Golovko, V. - Powiązania:
- https://bibliotekanauki.pl/articles/386338.pdf
- Data publikacji:
- 2008
- Wydawca:
- Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
- Tematy:
-
systemy wykrywania włamań
sieci neuronowe
intrusion detection systems (IDS)
neural networks - Opis:
- Most current Intrusion Detection Systems (IDS) examine all data features to detect intrusion. Also existing intrusion detection approaches have some limitations, namely impossibility to process a large number of audit data for real-time operation, low detection and recognition accuracy. To overcome these limitations, we apply modular neural network models to detect and recognize attacks in computer networks. They are based on the combination of principal component analysis (PCA) neural networks and multilayer perceptrons (MLP). PCA networks are employed for important data extraction and to reduce high dimensional data vectors. We present two PCA neural networks for feature extraction: linear PCA (LPCA) and nonlinear PCA (NPCA). MLP is employed to detect and recognize attacks using feature-extracted data instead of original data. The proposed approaches are tested with the help of KDD-99 dataset. The experimental results demonstrate that the designed models are promising in terms of accuracy and computational time for real world intrusion detection.
- Źródło:
-
Acta Mechanica et Automatica; 2008, 2, 4; 93-98
1898-4088
2300-5319 - Pojawia się w:
- Acta Mechanica et Automatica
- Dostawca treści:
- Biblioteka Nauki