Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "profiles" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
AmiRNA Designer - new method of artificial miRNA design
Autorzy:
Mickiewicz, Agnieszka
Rybarczyk, Agnieszka
Sarzynska, Joanna
Figlerowicz, Marek
Blazewicz, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/1038843.pdf
Data publikacji:
2016
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
artificial miRNA
RNAi
gene regulation
sequence specific
thermodynamic profiles
Opis:
MicroRNAs (miRNAs) are small non-coding RNAs that have been found in most of the eukaryotic organisms. They are involved in the regulation of gene expression at the post-transcriptional level in a sequence specific manner. MiRNAs are produced from their precursors by Dicer-dependent small RNA biogenesis pathway. Involvement of miRNAs in a wide range of biological processes makes them excellent candidates for studying gene function or for therapeutic applications. For this purpose, different RNA-based gene silencing techniques have been developed. Artificially transformed miRNAs (amiRNAs) targeting one or several genes of interest represent one of such techniques being a potential tool in functional genomics. Here, we present a new approach to amiRNA*design, implemented as AmiRNA Designer software. Our method is based on the thermodynamic analysis of the native miRNA/miRNA* and miRNA/target duplexes. In contrast to the available automated tools, our program allows the user to perform analysis of natural miRNAs for the organism of interest and to create customized constraints for the design stage. It also provides filtering of the amiRNA candidates for the potential off-targets. AmiRNA Designer is freely available at http://www.cs.put.poznan.pl/arybarczyk/AmiRNA/.
Źródło:
Acta Biochimica Polonica; 2016, 63, 1; 71-77
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Calculation of reliable transcript levels of annotated genes on the basis of multiple probe-sets in Affymetrix microarrays
Autorzy:
Jaksik, Roman
Polańska, Joanna
Herok, Robert
Rzeszowska-Wolny, Joanna
Powiązania:
https://bibliotekanauki.pl/articles/1040584.pdf
Data publikacji:
2009
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
multiple probe-sets
Affymetrix microarrays
transcript profiles
outlier detection
NucleoDix computer program
Opis:
Microarray methods have become a basic tool in studies of global gene expression and changes in transcript levels. Affymetrix microarrays from the HGU133 series contain multiple probe-sets complementary to the same gene (4742 genes are represented by more than one probe-set in a microarray HGU133A). Individual probe-sets annotated to the same gene often show different hybridization signals and even opposite trends, which may result from some of them matching transcripts of more than one gene and from the existence of different splice-variant transcripts. Existing methods that redefine probe-sets and develop custom probe-set definitions use mathematical tools such as Matlab or the R statistical environment with the Bioconductor package (Gentleman et al., 2004, Genome Biol. 5: 280) and thus are directed to researchers with a good knowledge of bioinformatics. We propose here a new approach based on the principle that a probe-set which hybridizes to more than one transcript can be recognized because it produces a signal significantly different from others assigned to the particular gene, allowing it to be detected as an outlier in the group and eliminated from subsequent analyses. A simple freeware application has been developed (available at www.bioinformatics.aei.polsl.pl) that detects and removes outlying probe-sets and calculates average signal values for individual genes using the latest annotation database provided by Affymetrix. We illustrate this procedure using microarray data from our experiments aiming to study changes of transcription profile induced by ionizing radiation in human cells.
Źródło:
Acta Biochimica Polonica; 2009, 56, 2; 271-277
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Denatured proteins and early folding intermediates simulated in a reduced conformational space
Autorzy:
Kmiecik, Sebastian
Kurcinski, Mateusz
Rutkowska, Aleksandra
Gront, Dominik
Kolinski, Andrzej
Powiązania:
https://bibliotekanauki.pl/articles/1041278.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
sequence profiles
statistical potentials
protein folding intermediates
high resolution lattice protein models
Replica Exchange Monte Carlo
molten globule
protein folding
Opis:
Conformations of globular proteins in the denatured state were studied using a high-resolution lattice model of proteins and Monte Carlo dynamics. The model assumes a united-atom and high-coordination lattice representation of the polypeptide conformational space. The force field of the model mimics the short-range protein-like conformational stiffness, hydrophobic interactions of the side chains and the main-chain hydrogen bonds. Two types of approximations for the short-range interactions were compared: simple statistical potentials and knowledge-based protein-specific potentials derived from the sequence-structure compatibility of short fragments of protein chains. Model proteins in the denatured state are relatively compact, although the majority of the sampled conformations are globally different from the native fold. At the same time short protein fragments are mostly native-like. Thus, the denatured state of the model proteins has several features of the molten globule state observed experimentally. Statistical potentials induce native-like conformational propensities in the denatured state, especially for the fragments located in the core of folded proteins. Knowledge-based protein-specific potentials increase only slightly the level of similarity to the native conformations, in spite of their qualitatively higher specificity in the native structures. For a few cases, where fairly accurate experimental data exist, the simulation results are in semiquantitative agreement with the physical picture revealed by the experiments. This shows that the model studied in this work could be used efficiently in computational studies of protein dynamics in the denatured state, and consequently for studies of protein folding pathways, i.e. not only for the modeling of folded structures, as it was shown in previous studies. The results of the present studies also provide a new insight into the explanation of the Levinthal's paradox.
Źródło:
Acta Biochimica Polonica; 2006, 53, 1; 131-144
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies