Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lipińska, Joanna" wg kryterium: Wszystkie pola


Wyświetlanie 1-7 z 7
Tytuł:
Cloning of the groE operon of the marine bacterium Vibrio harveyi using a lambda vector
Autorzy:
Kuchanny, Dorota
Klein, Gracjana
Krzewska, Joanna
Czyż, Agata
Lipińska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1044880.pdf
Data publikacji:
1998
Wydawca:
Polskie Towarzystwo Biochemiczne
Źródło:
Acta Biochimica Polonica; 1998, 45, 1; 261-270
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Escherichia coli small heat shock proteins IbpA/B enhance activity of enzymes sequestered in inclusion bodies.
Autorzy:
Kuczyńska-Wiśnik, Dorota
Żurawa-Janicka, Dorota
Narkiewicz, Joanna
Kwiatkowska, Joanna
Lipińska, Barbara
Laskowska, Ewa
Powiązania:
https://bibliotekanauki.pl/articles/1041504.pdf
Data publikacji:
2004
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
protein aggregation
inclusion bodies
IbpA/B
Opis:
Escherichia coli small heat shock proteins, IbpA/B, function as molecular chaperones and protect misfolded proteins against irreversible aggregation. IbpA/B are induced during overproduction of recombinant proteins and bind to inclusion bodies in E. coli cells. We investigated the effect of ΔibpA/B mutation on formation of inclusion bodies and biological activity of enzymes sequestered in the aggregates in E. coli cells. Using three different recombinant proteins: Cro-β-galactosidase, β-lactamase and rat rHtrA1 we demonstrated that deletion of the ibpA/B operon did not affect the level of produced inclusion bodies. However, in aggregates containing IbpA/B a higher enzymatic activity was detected than in the IbpA/B-deficient inclusion bodies. These results confirm that IbpA/B protect misfolded proteins from inactivation in vivo.
Źródło:
Acta Biochimica Polonica; 2004, 51, 4; 925-931
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Immune response against HtrA proteases in children with cutaneous mastocytosis
Autorzy:
Renke, Joanna
Kędzierska-Mieszkowska, Sabina
Lange, Magdalena
Nedoszytko, Bogusław
Liberek, Anna
Plata-Nazar, Katarzyna
Renke, Marcin
Wenta, Tomasz
Żurawa-Janicka, Dorota
Skórko-Glonek, Joanna
Lipińska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1038382.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
HtrA proteases
children
cutaneous mastocytosis
mast cells
Opis:
Mast cells play an important role in both, the innate and adaptive immunity, however, clonal proliferation of abnormal mast cells in various organs leads to mastocytosis. A skin variant of the disease, cutaneous mastocytosis (CM) is the most frequent form of mastocytosis in children. HtrA proteases are modulators of important cellular processes, including cell signaling and apoptosis, and are related to development of several pathologies. The above and the observation that mast cells constitutively release the HtrA1 protein, prompted us to investigate a possible involvement of the HtrA proteins in pediatric CM. Levels of the serum autoantibodies (IgG) against the recombinant HtrA proteins (HtrA1-4) in children with CM (n=36) and in healthy controls (n=62) were assayed. Anti-HtrA IgGs were detected using enzyme linked immunosorbent assay (ELISA) and Western-blotting. In the CM sera, levels of the anti-HtrA1 and anti-HtrA3 autoantibodies were significantly increased when compared to the control group, while the HtrA protein levels were comparable. No significant differences in the anti-HtrA2 IgG level were found; for the anti-HtrA4 IgGs lower levels in CM group were revealed. In healthy children, the IgG levels against the HtrA1, -3 and -4 increased significantly with the age of children; no significant changes were observed for the anti-HtrA2 IgG. Our results suggest involvement of the HtrA1 and HtrA3 proteins in pediatric CM; involvement of the HtrA4 protein is possible but needs to be investigated further. In healthy children, the autoantibody levels against HtrA1, -3 and -4, but not against HtrA2, increase with age.
Źródło:
Acta Biochimica Polonica; 2018, 65, 3; 471-478
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Characterization of disulfide exchange between DsbA and HtrA proteins from Escherichia coli
Autorzy:
Skórko-Glonek, Joanna
Sobiecka-Szkatuła, Anna
Lipińska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1041221.pdf
Data publikacji:
2006
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
DsbA oxidoreductase
disulfide exchange
HtrA protease
stoichiometry of HtrA-DsbA interaction
kinetics of HtrA oxidation
Opis:
DsbA is the major oxidase responsible for generation of disulfide bonds in proteins of E. coli envelope. In the present work we provided the first detailed characterization of disulfide exchange between DsbA and its natural substrate, HtrA protease. We demonstrated that HtrA oxidation relies on DsbA, both in vivo and in vitro. We followed the disulfide exchange between these proteins spectrofluorimetrically and found that DsbA oxidizes HtrA with a 1 : 1 stoichiometry. The calculated second-order apparent rate constant (kapp) of this reaction was 3.3 × 104 ± 0.6 × 104 M-1s-1. This value was significantly higher than the values obtained for nonfunctional disulfide exchanges between DsbA and DsbC or DsbD and it was comparable to the kapp values calculated for in vitro oxidation of certain non-natural DsbA substrates of eukaryotic origin.
Źródło:
Acta Biochimica Polonica; 2006, 53, 3; 585-589
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The DnaK chaperones from the archaeon Methanosarcina mazei and the bacterium Escherichia coli have different substrate specificities
Autorzy:
Żmijewski, Michal
Skórko-Glonek, Joanna
Tanfani, Fabio
Banecki, Bogdan
Kotlarz, Agnieszka
Macario, Alberto
Lipińska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1040934.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
archaeal DnaK quaternary structure
archaeal Hsp70(DnaK)
substrate-binding by archaeal DnaK
Opis:
Hsp70 (DnaK) is a highly conserved molecular chaperone present in bacteria, eukaryotes, and some archaea. In a previous work we demonstrated that DnaK from the archaeon Methanosarcina mazei (DnaKMm) and the DnaK from the bacterium Escherichia coli (DnaKEc) were functionally similar when assayed in vitro but DnaKMm failed to substitute for DnaKEc in vivo. Searching for the molecular basis of the observed DnaK species specificity we compared substrate binding by DnaKMm and DnaKEc. DnaKMm showed a lower affinity for the model peptide (a-CALLQSRLLS) compared to DnaKEc. Furthermore, it was unable to negatively regulate the E. coli σ32 transcription factor level under heat shock conditions and poorly bound purified σ32, which is a native substrate of DnaKEc. These observations taken together indicate differences in substrate specificity of archaeal and bacterial DnaKs. Structural modeling of DnaKMm showed some structural differences in the substrate-binding domains of DnaKMm and DnaKEc, which may be responsible, at least partially, for the differences in peptide binding. Size-exclusion chromatography and native gel electrophoresis revealed that DnaKMm was found preferably in high molecular mass oligomeric forms, contrary to DnaKEc. Oligomers of DnaKMm could be dissociated in the presence of ATP and a substrate (peptide) but not ADP, which may suggest that monomer is the active form of DnaKMm.
Źródło:
Acta Biochimica Polonica; 2007, 54, 3; 509-522
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Changes in expression of serine proteases HtrA1 and HtrA2 during estrogen-induced oxidative stress and nephrocarcinogenesis in male Syrian hamster
Autorzy:
Zurawa-Janicka, Dorota
Kobiela, Jaroslaw
Stefaniak, Tomasz
Wozniak, Agnieszka
Narkiewicz, Joanna
Wozniak, Michał
Limon, Janusz
Lipinska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1040768.pdf
Data publikacji:
2008
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
17-β-estradiol
HtrA proteases
estrogen-induced carcinogenesis
oxidative stress
Opis:
Serine proteases HtrA1 and HtrA2 are involved in cellular stress response and development of several diseases, including cancer. Our aim was to examine the involvement of the HtrA proteins in acute oxidative stress response induced in hamster kidney by estrogen treatment, and in nephrocarcinogenesis caused by prolonged estrogenization of male Syrian hamster. We used semi-quantitative RT-PCR to estimate the HtrA1 and HtrA2 mRNA levels in kidney tissues, and Western blotting to monitor the amount of the HtrA proteins. Within the first five hours following estrogen administration both HtrA1 mRNA and the protein levels were increased significantly. No changes in the expression of HtrA2 were observed. This indicates that HtrA1 may be involved in the response against oxidative stress induced by estrogen treatment in hamster kidney. During prolonged estrogenization, a significant reduction of the HtrA1 mRNA and protein levels was observed after 6 months of estradiol treatment, while the expression of HtrA2 was significantly elevated starting from the third month. This suggests an involvement of the HtrA proteins in estrogen-induced nephrocarcinogenesis in hamster. Using fluorescence in situ hybridization we localized the HtrA1 gene at the qb3-4 region of Syrian hamster chromosome 2, the region known to undergo a nonrandom deletion upon prolonged estrogenization. It is possible that the reduced level of HtrA1 expression is due to this chromosomal aberration. A full-length cDNA sequence of the hamster HtrA1 gene was obtained. It codes for a 50 kDa protein which has 98 and 96% identity with mouse and human counterparts, respectively.
Źródło:
Acta Biochimica Polonica; 2008, 55, 1; 9-20
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria
Autorzy:
Żmijewski, Michał
Skórko-Glonek, Joanna
Tanfani, Fabio
Banecki, Bogdan
Kotlarz, Agnieszka
Macario, Alberto
Lipińska, Barbara
Powiązania:
https://bibliotekanauki.pl/articles/1041069.pdf
Data publikacji:
2007
Wydawca:
Polskie Towarzystwo Biochemiczne
Tematy:
substrate-binding domain
DnaK-GrpE complex
archaeal Hsp70(DnaK)
archaeal DnaK structure
molecular chaperones
ATPase domain
Opis:
Hsp70s are chaperone proteins that are conserved in evolution and present in all prokaryotic and eukaryotic organisms. In the archaea, which form a distinct kingdom, the Hsp70 chaperones have been found in some species only, including Methanosarcina mazei. Both the bacterial and archaeal Hsp70(DnaK) chaperones cooperate with a GrpE co-chaperone which stimulates the ATPase activity of the DnaK protein. It is currently believed that the archaeal Hsp70 system was obtained by the lateral transfer of chaperone genes from bacteria. Our previous finding that the DnaK and GrpE proteins of M. mazei can functionally cooperate with the Escherichia coli GrpE and DnaK supported this hypothesis. However, the cooperation was surprising, considering the very low identity of the GrpE proteins (26%) and the relatively low identity of the DnaK proteins (56%). The aim of this work was to investigate the molecular basis of the observed interspecies chaperone interaction. Infrared resolution-enhanced spectra of the M. mazei and E. coli DnaK proteins were almost identical, indicating high similarity of their secondary structures, however, some small differences in band position and in the intensity of amide I' band components were observed and discussed. Profiles of thermal denaturation of both proteins were similar, although they indicated a higher thermostability of the M. mazei DnaK compared to the E. coli DnaK. Electrophoresis under non-denaturing conditions demonstrated that purified DnaK and GrpE of E. coli and M. mazei formed mixed complexes. Protein modeling revealed high similarity of the 3-dimensional structures of the archaeal and bacterial DnaK and GrpE proteins.
Źródło:
Acta Biochimica Polonica; 2007, 54, 2; 245-252
0001-527X
Pojawia się w:
Acta Biochimica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-7 z 7

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies