Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Sánchez, Roberto" wg kryterium: Wszystkie pola


Wyświetlanie 1-1 z 1
Tytuł:
The Lucas congruence for Stirling numbers of the second kind
Autorzy:
Sánchez-Peregrino, Roberto
Powiązania:
https://bibliotekanauki.pl/articles/1207077.pdf
Data publikacji:
2000
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Opis:
0. Introduction. The numbers introduced by Stirling in 1730 in his Methodus differentialis [11], subsequently called "Stirling numbers" of the first and second kind, are of the greatest utility in the calculus of finite differences, in number theory, in the summation of series, in the theory of algorithms, in the calculation of the Bernstein polynomials [9]. In this study, we demonstrate some properties of Stirling numbers of the second kind similar to those satisfied by binomial coefficients; in particular we show that they satisfy a congruence analogous to that of Lucas, that is to: $(a \atop b) ≡ ∏_{i=0}^{n} (a_{i} \atop b_{i}) mod p$ with $a = ∑_{i=0}^{n} a_{i} p^i$, $b = ∑_{i=0}^{n} b_{i} p^{i}$; $0 ≤ a_i ≤ p-1$, $0 ≤ b_i ≤ p-1$. Using Proposition 4.1 we give another proof for Kaneko's recurrence formula for poly-Bernoulli numbers [10]. Some of the results are similar to those of Howard [5].
In conclusion, I wish to give my best thanks to the Geometry Group of the Dipartimento di Matematica Pura ed Applicata and Dipartimento di Metodi Matematici per le Scienze Applicate of the University of Padova, for support and help given during the preparation of this work. In particular, I wish to thank Frank Sullivan for his precious advice and suggestions.
Źródło:
Acta Arithmetica; 2000, 94, 1; 41-52
0065-1036
Pojawia się w:
Acta Arithmetica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies