Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Partial Least Squares Regression" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Applying NIR spectroscopy to evaluate quality of whey protein supplements available on the Polish market
Zastosowanie spektroskopii w bliskiej podczerwieni do oceny jakości odżywek białkowych dostępnych na polskim rynku
Autorzy:
Wojcicki, K.
Powiązania:
https://bibliotekanauki.pl/articles/827095.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Technologów Żywności
Tematy:
human nutrition
supplemented diet
protein
whey protein
determination
near infrared spectroscopy
protein quality
protein content
principal component analysis
partial least squares regression
Opis:
The objective of the research study was to apply near infrared (NIR) spectroscopy to evaluate the quality of protein supplements available in the Polish shops and gyms. The evaluation was performed on the basis of the determination of the protein quantity contained in the individual samples by a Kjeldahl method and then the evaluation results were correlated with the measured NIR spectra using an appropriate chemometric method. The research material consisted of fifteen protein supplement samples for athletes, which included the following types: WPI (protein isolate), WPC (protein concentrate), WPH (protein hydrolysate), and mixtures thereof. The obtained NIR spectra of protein supplements were characterized by a similar shape of the bands. Depending on the type of protein, a different intensity of absorption of individual bands could be observed. A Principal Component Analysis (PCA) was used to distinguish the samples based on the spectra measured. Unfortunately, owing to the varying composition of the protein mixtures, it was not possible to find characteristic arrangement of the samples depending on their types. The spectra were correlated with the protein contents determined in the samples using a Partial Least Squares regression method (PLS regression) and various mathematic transformations of the NIR spectral data. The obtained regression models were analysed and the analysis results confirmed that it was possible to apply NIR spectra to estimate the content of proteins in protein supplements. The best result was obtained in a spectrum region between 9401 and 5448 cm⁻¹ and after the first derivative was applied with Multiplicate Scatter Correction (MSC) as a mathematical pre-treatment. On the basis of the results obtained, it was proved that the NIR spectra applied together with the chemometric analysis could be used to quickly evaluate the products studied.
Celem pracy było zastosowanie spektroskopii w zakresie bliskiej podczerwieni (NIR) do oceny jakości odżywek białkowych dostępnych w polskich sklepach i siłowniach. Oceny tej dokonano na podstawie wyznaczenia zawartości protein w poszczególnych odżywkach metodą Kjeldahla, a następnie skorelowaniu jej ze zmierzonymi widmami NIR, stosując odpowiednią metodę chemometryczną. Materiał do badań stanowiło piętnaście białkowych odżywek dla sportowców różnego typu: WPI (izolat białka), WPC (koncentrat białka) i WPH (hydrolizat białka) oraz ich mieszanki. Otrzymane widma NIR odżywek białkowych charakteryzowały się zbliżonym do siebie kształtem pasm. W zależności od rodzaju odżywki można było zaobserwować różną intensywność absorpcji poszczególnych pasm. Przeprowadzona analiza głównych składowych (PCA) wykorzystana została do rozróżnienia próbek na podstawie zmierzonych widm. Niestety ze względu na różny skład mieszanek białkowych nie udało się zaobserwować charakterystycznego rozmieszczenia próbek w zależności od ich rodzaju. Korelację widm z wyznaczoną zawartością protein w próbkach przeprowadzono stosując metodę regresji najmniejszych kwadratów (PLS) oraz różne przekształcenia matematyczne danych spektralnych. Analiza otrzymanych modeli regresji wykazała, że możliwe jest wykorzystane widm w bliskiej podczerwieni do przewidywania zawartości protein w odżywkach białkowych. Najlepszy rezultat otrzymano w zakresie widma 9401 ÷ 5548 cm⁻¹ oraz po zastosowaniu pierwszej pochodnej wraz z multiplikatywną korektą rozproszenia (MSC) jako przekształcenie matematyczne. Na podstawie otrzymanych wyników udowodniono, że zastosowanie widm NIR wraz z chemometryczną analizą pozwala na szybką ocenę jakości omawianych produktów.
Źródło:
Żywność Nauka Technologia Jakość; 2018, 25, 2
1425-6959
Pojawia się w:
Żywność Nauka Technologia Jakość
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies