- Tytuł:
- Vulnerability parameters of tensor product of complete equipartite graphs
- Autorzy:
-
Paulraja, P.
Sheeba-Agnes, V. - Powiązania:
- https://bibliotekanauki.pl/articles/255883.pdf
- Data publikacji:
- 2013
- Wydawca:
- Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
- Tematy:
-
fault tolerance
tensor product
vulnerability parameters - Opis:
- Let G1 and G2 be two simple graphs. The tensor product of G1 and G2, denoted by G1 × G2, has vertex set V (G1 × G2) = V (G1) × V (G2) and edge set E(G1 × G2) ={(u1, v1)(u2, v2) : u1u2 ∈ E(G1) and v1v2 ∈ E(G2)}. In this paper, we determine vulnerability parameters such as toughness, scattering number, integrity and tenacity of the tensor product of the graphs Kr(s) × Km(n) for r ≥ 3,m ≥ 3, s ≥ 1 and n ≥ 1, where Kr(s) denotes the complete r-partite graph in which each part has s vertices. Using the results obtained here the theorems proved in [Aygul Mamut, Elkin Vumar, Vertex Vulnerability Parameters of Kronecker Products of Complete Graphs, Information Processing Letters 106 (2008), 258–262] are obtained as corollaries.
- Źródło:
-
Opuscula Mathematica; 2013, 33, 4; 741-750
1232-9274
2300-6919 - Pojawia się w:
- Opuscula Mathematica
- Dostawca treści:
- Biblioteka Nauki