Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "signed total domination number" wg kryterium: Temat


Wyświetlanie 1-8 z 8
Tytuł:
Bounds on the inverse signed total domination numbers in graphs
Autorzy:
Atapour, M.
Norouzian, S.
Sheikholeslami, S. M.
Volkmann, L.
Powiązania:
https://bibliotekanauki.pl/articles/255596.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
inverse signed total dominating function
inverse signed total domination number
Opis:
Let G = (V, E) be a simple graph. A function ƒ : V→ {- 1,1} is called an inverse signed total dominating function if the sum of its function values over any open neighborhood is at most zero. The inverse signed total domination number of G, denoted by [formula], equals to the maximum weight of an inverse signed total dominating function of G. In this paper, we establish upper bounds on the inverse signed total domination number of graphs in terms of their order, size and maximum and minimum degrees.
Źródło:
Opuscula Mathematica; 2016, 36, 2; 145-152
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
New Bounds on the Signed Total Domination Number of Graphs
Autorzy:
Moghaddam, Seyyed Mehdi Hosseini
Mojdeh, Doost Ali
Samadi, Babak
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31340895.pdf
Data publikacji:
2016-05-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
open packing
signed total domination number
total limited packing
tuple total domination number
Opis:
In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on $ K_{r+1} $-free graphs for $ r \ge 2 $. Applying the concept of total limited packing we bound the signed total domination number of $ G $ with $ \delta (G) \ge 3 $ from above by $ n - 2 \floor{ \frac{ 2 \rho_0 (G) + \delta - 3 }{ 2 } } $. Also, we prove that $ \gamma_{st} (T) \le n − 2(s − s^′ ) $ for any tree $ T $ of order$ $ n, with $ s $ support vertices and $ s^′ $ support vertices of degree two. Moreover, we characterize all trees attaining this bound.
Źródło:
Discussiones Mathematicae Graph Theory; 2016, 36, 2; 467-477
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the inverse signed total domination number in graphs
Autorzy:
Mojdeh, D. A.
Samadi, B.
Powiązania:
https://bibliotekanauki.pl/articles/255392.pdf
Data publikacji:
2017
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
inverse signed total dominating function
inverse signed total domination number
k-tuple total domination number
Opis:
In this paper, we study the inverse signed total domination number in graphs and present new sharp lower and upper bounds on this parameter. For example by making use of the classic theorem of Turán (1941), we present a sharp upper bound on Kr+1-free graphs for r ≥ 2. Also, we bound this parameter for a tree from below in terms of its order and the number of leaves and characterize all trees attaining this bound.
Źródło:
Opuscula Mathematica; 2017, 37, 3; 447-456
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On signed arc total domination in digraphs
Autorzy:
Asgharsharghi, L.
Khodkar, A.
Sheikholeslami, S. M.
Powiązania:
https://bibliotekanauki.pl/articles/254811.pdf
Data publikacji:
2018
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
signed arc total dominating function signed arc total domination number domination in digraphs
Opis:
Let D = (V, A) be a finite simple digraph and N(uv) = {u'v' ≠ uv | u = u' or v = v'} be the open neighbourhood of uv in D. A function ƒ : A → { — 1, +1} is said to be a signed arc total dominating function (SATDF) of D if [formula] holds for every arc uv ∈ A. The signed arc total domination number [formula] is defined as [formula]. In this paper we initiate the study of the signed arc total domination in digraphs and present some lower bounds for this parameter.
Źródło:
Opuscula Mathematica; 2018, 38, 6; 779-794
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signed Total Roman Edge Domination In Graphs
Autorzy:
Asgharsharghi, Leila
Sheikholeslami, Seyed Mahmoud
Powiązania:
https://bibliotekanauki.pl/articles/31341578.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total Roman dominating function
signed total Roman domination number
signed total Roman edge dominating function
signed total Roman edge domination number
Opis:
Let $ G = (V,E) $ be a simple graph with vertex set $V$ and edge set $E$. A signed total Roman edge dominating function of $G$ is a function $ f : E \rightarrow {−1, 1, 2} $ satisfying the conditions that (i) $ \Sigma_{e^′ \in N(e)} f(e^′) \ge 1 $ for each $ e \in E $, where $N(e)$ is the open neighborhood of $e$, and (ii) every edge $e$ for which $f(e) = −1$ is adjacent to at least one edge $ e^′$ for which $f(e^′) = 2$. The weight of a signed total Roman edge dominating function $f$ is $ \omega(f) = \Sigma_{e \in E } f(e) $. The signed total Roman edge domination number $ \gamma_{stR}^' (G) $ of $G$ is the minimum weight of a signed total Roman edge dominating function of $G$. In this paper, we first prove that for every tree $T$ of order $ n \ge 4 $, $ \gamma_{stR}^' (T) \ge \frac{17−2n}{5} $ and we characterize all extreme trees, and then we present some sharp bounds for the signed total Roman edge domination number. We also determine this parameter for some classes of graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 1039-1053
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signed Total Roman Domination in Digraphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31342127.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
digraph
signed total Roman dominating function
signed total Roman domination number
Opis:
Let $D$ be a finite and simple digraph with vertex set $V (D)$. A signed total Roman dominating function (STRDF) on a digraph $D$ is a function $ f : V (D) \rightarrow {−1, 1, 2} $ satisfying the conditions that (i) $ \Sigma_{x \in N^− (v) } f(x) \ge 1 $ for each $ v \in V (D) $, where $ N^− (v) $ consists of all vertices of $D$ from which arcs go into $v$, and (ii) every vertex u for which $f(u) = −1$ has an inner neighbor $v$ for which $f(v) = 2$. The weight of an STRDF $f$ is $ w(f) = \Sigma_{ v \in V } (D) f(v) $. The signed total Roman domination number $ \gamma_{stR} (D) $ of $D$ is the minimum weight of an STRDF on $D$. In this paper we initiate the study of the signed total Roman domination number of digraphs, and we present different bounds on $ \gamma_{stR} (D) $. In addition, we determine the signed total Roman domination number of some classes of digraphs. Some of our results are extensions of known properties of the signed total Roman domination number $ \gamma_{stR} (G)$ of graphs $G$.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 261-272
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Upper Bounds on the Signed Total (k, k)-Domatic Number of Graphs
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31339301.pdf
Data publikacji:
2015-11-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total (k
k)-domatic number
signed total k-dominating function
signed total k-domination number
regular graphs
Opis:
Let $G$ be a graph with vertex set $V (G)$, and let $ f : V (G) \rightarrow {−1, 1}$ be a two-valued function. If $ k \geq 1$ is an integer and \( \sum_{ x \in N(v)} f(x) \geq k \) for each $ v \in V (G) $, where $N(v)$ is the neighborhood of $v$, then $f$ is a signed total $k$-dominating function on $G$. A set ${f_1, f_2, . . ., f_d}$ of distinct signed total k-dominating functions on $G$ with the property that \( \sum_{i=1}^d f_i(x) \leq k \) for each $ x \in V (G)$, is called a signed total ($k$, $k$)-dominating family (of functions) on $G$. The maximum number of functions in a signed total ($k$, $k$)-dominating family on $G$ is the signed total ($k$, $k$)-domatic number of $G$. In this article we mainly present upper bounds on the signed total ($k$, $k$)- domatic number, in particular for regular graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2015, 35, 4; 641-650
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The Signed Total Roman k-Domatic Number Of A Graph
Autorzy:
Volkmann, Lutz
Powiązania:
https://bibliotekanauki.pl/articles/31341581.pdf
Data publikacji:
2017-11-27
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
signed total Roman k-dominating function
signed total Roman k-domination number
signed total Roman k-domatic number
Opis:
Let $ k \ge 1 $ be an integer. A signed total Roman $k$-dominating function on a graph $G$ is a function $ f : V (G) \rightarrow {−1, 1, 2} $ such that $ \Sigma_{ u \in N(v) } f(u) \ge k $ for every $ v \in V (G) $, where $ N(v) $ is the neighborhood of $ v $, and every vertex $ u \in V (G) $ for which $ f(u) = −1 $ is adjacent to at least one vertex w for which $ f(w) = 2 $. A set $ { f_1, f_2, . . ., f_d} $ of distinct signed total Roman $k$-dominating functions on $G$ with the property that $ \Sigma_{i=1}^d f_i(v) \le k $ for each $ v \in V (G) $, is called a signed total Roman $k$-dominating family (of functions) on $G$. The maximum number of functions in a signed total Roman $k$-dominating family on $G$ is the signed total Roman $k$-domatic number of $G$, denoted by $ d_{stR}^k (G) $. In this paper we initiate the study of signed total Roman $k$-domatic numbers in graphs, and we present sharp bounds for $ d_{stR}^k (G) $. In particular, we derive some Nordhaus-Gaddum type inequalities. In addition, we determine the signed total Roman $k$-domatic number of some graphs.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 4; 1027-1038
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-8 z 8

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies