Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nilpotent matrix" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
The Jacobian Conjecture in case of "non-negative coefficients"
Autorzy:
Drużkowski, Ludwik
Powiązania:
https://bibliotekanauki.pl/articles/1294772.pdf
Data publikacji:
1997
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
polynomial automorphisms
nilpotent matrix
Jacobian Conjecture
Opis:
It is known that it is sufficient to consider in the Jacobian Conjecture only polynomial mappings of the form $F(x₁,...,x_n) = x - H(x) := (x₁ - H₁(x₁,...,x_n),...,x_n - H_n(x₁,...,x_n))$, where $H_j$ are homogeneous polynomials of degree 3 with real coefficients (or $H_j = 0$), j = 1,...,n and H'(x) is a nilpotent matrix for each $x = (x₁,...,x_n) ∈ ℝ^n$.
We give another proof of Yu's theorem that in the case of non-negative coefficients of H the mapping F is a polynomial automorphism, and we moreover prove that in that case $deg F^{-1} ≤ (deg F)^{ind F - 1}$, where $ind F := max{ind H'(x): x ∈ ℝ^n}$. Note that the above inequality is not true when the coefficients of H are arbitrary real numbers; cf. [E3].
Źródło:
Annales Polonici Mathematici; 1997, 66, 1; 67-75
0066-2216
Pojawia się w:
Annales Polonici Mathematici
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies