Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "metoda PSO" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
The influence of inertia weight on the Particle Swarm Optimization algorithm
Autorzy:
Cekus, D.
Skrobek, D.
Powiązania:
https://bibliotekanauki.pl/articles/122644.pdf
Data publikacji:
2018
Wydawca:
Politechnika Częstochowska. Wydawnictwo Politechniki Częstochowskiej
Tematy:
particle swarm optimization (PSO)
PSO algorithm
inertia weight
trajectory
optymalizacja rojem cząstek
PSO
algorytm PSO
metoda PSO
algorytm optymalizacji rojem cząstek
trajektoria
współczynnik wagowy
Opis:
The paper presents the use of the Particle Swarm Optimization (PSO) algorithm to find the shortest trajectory connecting two defined points while avoiding obstacles. The influence of the inertia weight and the number of population adopted in the first iteration of the PSO algorithm was examined for the length of the sought trajectory. Simulation results showed that the proposed method achieved significant improvement compared to the linearly decreasing method technique that is widely used in literature.
Źródło:
Journal of Applied Mathematics and Computational Mechanics; 2018, 17, 4; 5-11
2299-9965
Pojawia się w:
Journal of Applied Mathematics and Computational Mechanics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-objective optimization with adjusted PSO method on example of cutting process of hardened 18CrMo4 steel
Optymalizacja wielokryterialna skorygowaną metodą PSO na przykładzie procesu skrawania stali 18CrMo4 w stanie zahartowanym
Autorzy:
Stryczek, R.
Pytlak, B.
Powiązania:
https://bibliotekanauki.pl/articles/1366141.pdf
Data publikacji:
2014
Wydawca:
Polska Akademia Nauk. Polskie Naukowo-Techniczne Towarzystwo Eksploatacyjne PAN
Tematy:
toczenie na twardo
metoda optymalizacji wielocząsteczkowej (PSO)
obliczenia ewolucyjne
optymalizacja wielokryterialna
entropia
hard turning
particle swarm optimization (PSO) method
evolutionary computations
multi-objective optimization
entropy
Opis:
W pracy zaproponowano zmodyfikowaną metodę optymalizacji wielocząsteczkowej (PSO) dla problemów optymalizacji wielokryterialnej z dyskretną przestrzenią decyzyjną. W metodzie PSO zmieniono sposób określania momentu bezwładności, współczynnika uczenia oraz współczynnika społecznego. Dodatkowo wprowadzono elitaryzm oraz innowacyjny mechanizm hamowania cząstek chroniący je przed przekraczaniem dopuszczalnych granic przestrzeni decyzyjnej. Zaproponowane podejście zostało zweryfikowane na szeregu aktualnych funkcjach testowych oraz problemie optymalizacji procesu skrawania stali 18CrMo4 w stanie zahartowanym, gdzie porównano je z wynikami uzyskanymi za pomocą algorytmów genetycznych (GA). Uzyskane wyniki wskazują, że zaproponowane podejście jest względnie szybkie i wysoce konkurencyjne w stosunku do innych metod optymalizacji. Autorzy uzyskali bardzo różnorodne, zbieżne i w pełnym zakresie przebiegi frontu Pareto w przestrzeni kryteriów. W celu oceny jakości wygenerowanego zbioru Pareto dla każdego z prezentowanych przykładów wyznaczono ocenę opartą na pomiarze entropii oraz wskaźnika jakości IGD.
In this paper a Modified Particle Swarm Optimization (PSO) method for multi-objective (MO) problems with a discrete decision space is proposed. In the PSO method the procedure to determine inertia weight, learning factor and social factor is modified. In addition, both an elitism strategy and innovative deceleration mechanism preventing the particles from going beyond the limits of decision space are introduced. The proposed approach has been applied to a series of currently used test functions as well as to optimization problems connected with finish hard turning operation, where the obtained results have been compared with those obtained by means of Genetic Algorithms (GA). The results indicate that the proposed approach is relatively quick, and thus it is highly competitive with other optimization methods. The authors have obtained a very good diversity, convergence and a maximum range of the Pareto front in the criteria space. In order to assess the quality of the generated Pareto set for each of presented examples, a rating has been determined based on the entropy measurement and inverted generational distance (IGD).
Źródło:
Eksploatacja i Niezawodność; 2014, 16, 2; 236-245
1507-2711
Pojawia się w:
Eksploatacja i Niezawodność
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optymalizacja cyklu roboczego manipulatora z parami obrotowymi
Optimization of work cycle of manipulator with revolute joints
Autorzy:
Posiadała, B.
Tomala, M.
Powiązania:
https://bibliotekanauki.pl/articles/171143.pdf
Data publikacji:
2014
Wydawca:
Poltegor-Instytut Instytut Górnictwa Odkrywkowego
Tematy:
manipulator
aktuator
modelowanie dynamiki
optymalizacja pracy
metoda roju cząstek
actuator
dynamics modelling
optimization
particle swarm optimization (PSO)
Opis:
W artykule przedstawiono zagadnienie optymalizacji cyklu roboczego manipulatora wyposażonego w kinematyczne pary obrotowe. Jako kryterium optymalizacji przyjęto minimalizację obciążeń w aktuatorach manipulatora oraz minimalizację całkowitego czasu wykonania przez manipulator cyklu roboczego, polegającego na transporcie końcówki roboczej z jednego punktu trójwymiarowej przestrzeni do innego. W pracy zamieszczono przykładowe wyniki obliczeń numerycznych.
In this work, the problem of work cycle optimization of manipulator with revolute joints has been presented. The optimization purposes to minimize torques in actuators of the manipulator and total time of the work cycle. The work cycle is to move end-effector from one point of spatial workspace to another. An exemplary computation has been performed and results of the computation have been attached to the paperwork.
Źródło:
Górnictwo Odkrywkowe; 2014, 55, 4-5; 71-75
0043-2075
Pojawia się w:
Górnictwo Odkrywkowe
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Research on the influence of airflow resistance of layered porous structures on the sound absorption coefficient
Autorzy:
Flach, Artur
Powiązania:
https://bibliotekanauki.pl/articles/24201972.pdf
Data publikacji:
2022
Wydawca:
Politechnika Poznańska. Instytut Mechaniki Stosowanej
Tematy:
airflow resistance
anechoic wedges
transfer matrix method
optimization
PSO
particle swarm optimization
opór przepływu powietrza
kliny akustyczne
metoda macierzy przejścia
optymalizacja
optymalizacja roju cząstek
Opis:
The paper presents the research on the influence of airflow resistance on the sound absorption coefficient of layered porous structures. For the calculation of the sound absorption coefficient, the models of layered sound-absorbing structures were developed with the use of numerical computational models. Using the developed models, optimization was carried out to maximize the average sound absorption coefficient of the structures for a given frequency range. As a result of the research, the dependence of the change in airflow resistance for the successive layers of the material was determined. The results of the work will be particularly useful in the design of wedges used in anechoic chambers.
Źródło:
Vibrations in Physical Systems; 2022, 33, 3; art. no. 2022311
0860-6897
Pojawia się w:
Vibrations in Physical Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A novel fuzzy c-regression model algorithm using a new error measure and particle swarm optimization
Autorzy:
Soltani, M.
Chaari, A.
Ben Hmida, F.
Powiązania:
https://bibliotekanauki.pl/articles/330134.pdf
Data publikacji:
2012
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
model rozmyty Takagi-Sugeno
algorytm grupowania
metoda najmniejszych kwadratów
optymalizacja rojem cząstek
Takagi-Sugeno fuzzy models
noise clustering algorithm
fuzzy c-regression model
orthogonal least squares
particle swarm optimization (PSO)
Opis:
This paper presents a new algorithm for fuzzy c-regression model clustering. The proposed methodology is based on adding a second regularization term in the objective function of a Fuzzy C-Regression Model (FCRM) clustering algorithm in order to take into account noisy data. In addition, a new error measure is used in the objective function of the FCRM algorithm, replacing the one used in this type of algorithm. Then, particle swarm optimization is employed to finally tune parameters of the obtained fuzzy model. The orthogonal least squares method is used to identify the unknown parameters of the local linear model. Finally, validation results of two examples are given to demonstrate the effectiveness and practicality of the proposed algorithm.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2012, 22, 3; 617-628
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies