Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "kd-trees" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Tree-based control space structures for discrete metric sources in 3D meshing
Autorzy:
Głut, Barbara
Jurczyk, Tomasz
Powiązania:
https://bibliotekanauki.pl/articles/305686.pdf
Data publikacji:
2019
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
control space
kd-trees
octree
anisotropic metric
mesh generation and adaptation
discrete metric sources
Opis:
This article compares the different variations of the octree and kd-tree structures used to create a control space based on a set of discrete metric point-sources. The control space thus created supervises the generation of the mesh providing efficient access to the required information on the desired shape and size of the mesh elements at each point of the discretized domain. Structures are compared in terms of computational and memory complexity as well as regarding the accuracy of the approximation of the set of discrete metric sources in the created control space structure.
Źródło:
Computer Science; 2019, 20 (4); 493-509
1508-2806
2300-7036
Pojawia się w:
Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Efficient astronomical data condensation using approximate nearest neighbors
Autorzy:
Łukasik, Szymon
Lalik, Konrad
Sarna, Piotr
Kowalski, Piotr A.
Charytanowicz, Małgorzata
Kulczycki, Piotr
Powiązania:
https://bibliotekanauki.pl/articles/907932.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
big data
astronomical observation
data reduction
nearest neighbor search
kd-trees
duży zbiór danych
obserwacja astronomiczna
redukcja danych
wyszukiwanie najbliższego sąsiada
drzewo kd
Opis:
Extracting useful information from astronomical observations represents one of the most challenging tasks of data exploration. This is largely due to the volume of the data acquired using advanced observational tools. While other challenges typical for the class of big data problems (like data variety) are also present, the size of datasets represents the most significant obstacle in visualization and subsequent analysis. This paper studies an efficient data condensation algorithm aimed at providing its compact representation. It is based on fast nearest neighbor calculation using tree structures and parallel processing. In addition to that, the possibility of using approximate identification of neighbors, to even further improve the algorithm time performance, is also evaluated. The properties of the proposed approach, both in terms of performance and condensation quality, are experimentally assessed on astronomical datasets related to the GAIA mission. It is concluded that the introduced technique might serve as a scalable method of alleviating the problem of the dataset size.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 3; 467-476
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies