Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "fuzzy-neural networks" wg kryterium: Temat


Tytuł:
Information Technology of Stock Indexes Forecasting on the Base of Fuzzy Neural Networks
Autorzy:
Tryus, Y.
Antipova, N.
Zhuravel, K.
Zaspa, G.
Powiązania:
https://bibliotekanauki.pl/articles/118277.pdf
Data publikacji:
2017
Wydawca:
Polskie Towarzystwo Promocji Wiedzy
Tematy:
neural networks
fuzzy neural networks
forecasting
stock indexes
Opis:
In this research the information technology for stock indexes forecast on the base of fuzzy neural networks was created. The possibility of its use for multi-parameter short-time stock indexes forecasts, in particular S&P500, DJ, NASDAC was checked. The created information technology is used making several consequential steps. The stock indexes forecast numeral experiment based on real data for period of several years with use of the technology offered was made.
Źródło:
Applied Computer Science; 2017, 13, 1; 29-40
1895-3735
Pojawia się w:
Applied Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy inference neural networks with fuzzy parameters
Autorzy:
Rutkowska, D.
Hayashi, Y.
Powiązania:
https://bibliotekanauki.pl/articles/1931581.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
neuro-fuzzy systems
fuzzy neural networks
fuzzy inference neural networks
fuzzy systems of type 2
fuzzy granulation
Opis:
This paper concerns fuzzy neural networks and fuzzy inference neural networks, which are two different approaches to neuro-fuzzy combinations. The former is a direct fuzzification of artificial neural networks by introducing fuzzy signals and fuzzy weights. The latter is a representation of fuzzy systems in the form of multi-layer connectionist networks, similar to neural networks. Parameters of membership functions (centers and widths) play the role of neural network weights. In this paper, fuzzy inference neural networks with fuzzy parameters are considered. Neuro-fuzzy systems of this kind utilize both approaches: fuzzy neural networks and fuzzy inference neural networks. They also pertain to fuzzy systems of type 2 since membership functions with fuzzy parameters characterize type 2 fuzzy sets. Various architectures of these networks have been obtained for fuzzy systems based on different fuzzy implications. By analogy with fuzzy inference neural networks with crisp parameters, methods of learning fuzzy parameters and rule generation can be derived for neuro-fuzzy systems with fuzzy parameters. Fuzzy inference neural networks are studied in the framework of fuzzy granulation. In particular, fuzzy clustering as fuzzy information granulation is proposed to be applied in order to generate fuzzy IF-THEN rules. Applications of fuzzy inference neural networks are also outlined.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 7-22
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modeling of self-induced vibrations that occur during the machining process of casting patterns with the use of the fuzzy-neural networks method
Modelowanie drgań samowzbudnych powstających w procesie mechanicznej obróbki formierskich płyt odlewniczych za pomocą sieci rozmyto-neuronowych
Autorzy:
Herberg, A.
Powiązania:
https://bibliotekanauki.pl/articles/354238.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
self-induced vibrations
casting patterns
fuzzy-neural networks
local models
drgania samowzbudne
wzory odlewnicze
sieci rozmyto-neuronowe
płyty modelowe
Opis:
This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.
W procesie technologicznym wykonania odlewu, istotna pozycja jest omodelowanie odlewnicze, składające się z pojedynczych modeli lub zestawów modeli montowanych na płytach formierskich modelowych. Tak określone omodelowanie służy do odwzorowania w zagęszczonej masie formierskiej kształtu wnęki formy, odtwarzającej odlew zgodnie z technologicznością procesu. Szczególną rolę w jakości gotowego odlewu, przypisuje się jakości płyt modelowych wraz z zestawem modeli, stosowanych w automatach formierskich wykonujących formy odlewnicze. Produkcja płyt modelowych odbywa się na zautomatyzowanych stanowiskach obróbczych CNC, w których podczas procesu obróbki ubytkowej występują niepożądane drgania, zwłaszcza samowzbudne. Drgania niekorzystnie wpływaja na dokładnosc wymiarowa i jakosc powierzchni obrabianych płyt i modeli odlewniczych. Eliminacja drgan samowzbudnych w trakcie procesu skrawania jest jednym z warunków wykonania płyt modelowych o wysokiej jakości. W artykule przedstawiona zostanie metodyka modelowania drgań samowzbudnych za pomocą sieci rozmyto-neuronowych. Jest to pierwszy etap w eliminacji niepożądanych drgań samowzbudnych wystepujących w procesie wytwarzania płyt modelowych. Zamodelowanie drgań samowzbudnych umożliwia analizę procesu powstawania drgań i opracowanie skutecznych metod ich eliminacji, a docelowo zaprojektowanie układu regulacji niwelującego te drgania. Ponadto scharakteryzowano problemy eksploatacyjne, jako następstwo występowania drgań samowzbudnych. Przeanalizowano możliwosci zastosowania sieci rozmyto-neuronowych w celu modelowania drgań samowzbudnych wraz z omówieniem zalet i wad sieci. Przedstawiono również algorytm do tworzenia odpowiednich struktur sieci rozmyto-neuronowych dla modeli lokalnych i przykłady zastosowania algorytmu w procesie modelowania drgań samowzbudnych.
Źródło:
Archives of Metallurgy and Materials; 2013, 58, 3; 871-875
1733-3490
Pojawia się w:
Archives of Metallurgy and Materials
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych
Methods of adaptation of knowledge systems based on fuzzy sets
Autorzy:
Małolepsza, Olga
Powiązania:
https://bibliotekanauki.pl/articles/41205866.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Kazimierza Wielkiego w Bydgoszczy
Tematy:
zbiory rozmyte
metody adaptacji
funkcja przynależności
sztuczna inteligencja
systemy rozmyte
rozmyte sieci neuronowe
fuzzy sets
adaptation method
membership function
artificial intelligence
fuzzy systems
fuzzy neural networks
Opis:
Metody adaptacji systemów wiedzy opartej na zbiorach rozmytych są bardzo ważnym tematem, ponieważ udoskonalają i optymalizują wydajność systemów rozmytych poprzez właściwą metodę adaptacji. Metoda adaptacji zależy od konkretnego zastosowania, wymagań systemowych, dostępnych danych i dziedziny problemu. W artykule przedstawiono zagadnienia związane ze zbiorami rozmytymi oraz podano przykłady. Ponadto zaprezentowano metody adaptacji systemów wiedzy opartej na zbiorach rozmytych takie jak algorytmy genetyczne, programowanie ewolucyjne, algorytmy uczące się, uczenie przez wzmacnianie oraz adaptację online
Adaptation methods for knowledge systems based on fuzzy sets are a very important topic because they improve and optimize the performance of fuzzy systems through a proper adaptation method. The adaptation method depends on the specific application, system requirements, available data and the problem domain. In this paper, the issues related to fuzzy sets are presented and examples are given. In addition, methods for adaptation of fuzzy set-based knowledge systems such as genetic algorithms, evolutionary programming, learning algorithms, reinforcement learning and online adaptation are presented.
Źródło:
Studia i Materiały Informatyki Stosowanej; 2023, 15, 1; 11-20
1689-6300
Pojawia się w:
Studia i Materiały Informatyki Stosowanej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Membership function - ARTMAP neural networks
Autorzy:
Sinčák, P.
Hric, M.
Vaščák, J.
Powiązania:
https://bibliotekanauki.pl/articles/1931570.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
pattern recognition principles
classifier design
classification accuracy assessment
contingency tables
backpropagation neural networks
fuzzy BP neural networks
ART and ARTMAP neural networks
modular neural networks
neural networks
Opis:
The project deals with the application of computational intelligence (CI) tools for multispectral image classification. Pattern Recognition scheme is a global approach where the classification part is playing an important role to achieve the highest classification accuracy. Multispectral images are data mainly used in remote sensing and this kind of classification is very difficult to assess the accuracy of classification results. There is a feedback problem in adjusting the parts of pattern recognition scheme. Precise classification accuracy assessment is almost impossible to obtain, being an extremely laborious procedure. The paper presents simple neural networks for multispectral image classification, ARTMAP-like neural networks as more sophisticated tools for classification, and a modular approach to achieve the highest classification accuracy of multispectral images. There is a strong link to advances in computer technology, which gives much better conditions for modelling more sophisticated classifiers for multispectral images.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 43-52
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Existence and exponential stability of a periodic solution for fuzzy cellular neural networks with time-varying delays
Autorzy:
Zhang, Q.
Yang, L.
Liao, D.
Powiązania:
https://bibliotekanauki.pl/articles/930186.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
sieć neuronowa
stateczność wykładnicza
rozwiązanie okresowe
fuzzy cellular neural networks
global exponential stability
periodic solution
coincidence degree
Opis:
Fuzzy cellular neural networks with time-varying delays are considered. Some sufficient conditions for the existence and exponential stability of periodic solutions are obtained by using the continuation theorem based on the coincidence degree and the differential inequality technique. The sufficient conditions are easy to use in pattern recognition and automatic control. Finally, an example is given to show the feasibility and effectiveness of our methods.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2011, 21, 4; 649-658
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Almost periodic synchronization of fuzzy cellular neural networks with time-varying delays via state-feedback and impulsive control
Autorzy:
Li, Yongkun
Wang, Huimei
Meng, Xiaofang
Powiązania:
https://bibliotekanauki.pl/articles/331017.pdf
Data publikacji:
2019
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
almost periodic solution
fuzzy cellular neural networks
time varying delays
state feedback
impulsive control
rozwiązanie okresowe
sieć neuronowa
opóźnienie czasowe
sprzężenie zwrotne
Opis:
In this paper, we are concerned with drive-response synchronization for a class of fuzzy cellular neural networks with time varying delays. Based on the exponential dichotomy of linear differential equations, the Banach fixed point theorem and the differential inequality technique, we obtain the existence of almost periodic solutions of this class of networks. Then, we design a state feedback and an impulsive controller, and construct a suitable Lyapunov function to study the problem of global exponential almost periodic synchronization for the drive-response systems considered. At the end of the paper, we provide an example to verify the effectiveness of the theoretical results.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2019, 29, 2; 337-349
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Signature recognition with a hybrid approach combining modular neural networks and fuzzy logic for response integration
Autorzy:
Beltrán, M.
Melin, P.
Trujillo, L.
Lopez, M.
Powiązania:
https://bibliotekanauki.pl/articles/384541.pdf
Data publikacji:
2010
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
pattern recognition
neural networks
fuzzy logic
Opis:
This paper describes a modular neural network (MNN) with fuzzy integration for the problem of signature recognition. Currently, biometric identification has gained a great deal of research interest within the pattern recognition community. For instance, many attempts have been made in order to automate the process of identifying a person’s handwritten signature; however this problem has proven to be a very difficult task. In this work, we propose a MNN that has three separate modules, each using different image features as input, these are: edges, wavelet coefficients, and the Hough transform matrix. Then, the outputs from each of these modules are combined using a Sugeno fuzzy integral and a fuzzy inference system. The experimental results obtained using a database of 30 individual’s shows that the modular architecture can achieve a very high 99.33% recognition accuracy with a test set of 150 images. Therefore, we conclude that the proposed architecture provides a suitable platform to build a signature recognition system. Furthermore we consider the verification of signatures as false acceptance, false rejection and error recognition of the MNN.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2010, 4, 1; 20-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Inversion of fuzzy neural networks for the reduction of noise in the control loop for automotive applications
Autorzy:
Nentwig, M.
Mercorelli, P.
Powiązania:
https://bibliotekanauki.pl/articles/384669.pdf
Data publikacji:
2009
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
neural networks
fuzzy control
inversion of neural networks
automotive control
noise reduction
Opis:
A robust throttle valve control has been an attractive problem since throttle by wire systems were established in the mid-nineties. Control strategies often use a feed-forward controller which use an inverse model; however, mathematical model inversions imply a high order of differentiation of the state variables resulting in noise effects. In general, neural networks are a very effective and popular tool for modelling. The inversion of a neural network makes it possible to use these networks in control problem schemes. This paper presents a control strategy based upon an inversion of a feed-forward trained local linear model tree. The local linear model tree is realized through a fuzzy neural network. Simulated results from real data measurements are presented, and two control loops are explicitly compared.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2009, 3, 3; 83-89
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Hybrid intelligent system for pattern recognition
Autorzy:
Melin, P.
Castillo, O.
Powiązania:
https://bibliotekanauki.pl/articles/384459.pdf
Data publikacji:
2007
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
soft computing
intelligent system
algorithms
fuzzy logic
neural networks
Opis:
We describe in this paper a general overview oj the analysis and design of hybrid intelligent systems for pattern recognition applications. Hybrid intelligent systems can be developed by a careful combination of several soft-computing techniques. The combination of soft computing techniques has to take advantage of the capabilities of each technique in solving port of the pattern recognition problem. We review the problems of face, fingerprint and mice recognition and their soiution using hybrid intelligent systems. Recognition rates achieved with the hybrid approaches are comparable with the best approaches known for solving these recognition problems.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2007, 1, 2; 13-19
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Perception-based reasoning: evaluation systems
Autorzy:
Rutkowska, D.
Powiązania:
https://bibliotekanauki.pl/articles/1931577.pdf
Data publikacji:
2003
Wydawca:
Politechnika Gdańska
Tematy:
fuzzy sets
perception-based systems
fuzzy neurons
neural networks
artificial intelligence
Opis:
A perception-based interpretation of evaluation systems is proposed in this paper. Thus, a perception-based approach to create intelligent systems is considered. The evaluation systems can be employed eg. in order to assess student exams, as well as to other applications. Evaluation marks used in these systems are given as perceptions expressed by words. The words play the role of labels of perceptions, and are represented by fuzzy sets. This means that the idea of perception-based systems, introduced by Zadeh, is applied. Various algorithms of overall assessment are suggested in this paper. Overall evaluation is produced as an aggregation of component evaluation marks. Systems of this kind can be obtained using fuzzy neurons, so fuzzy neural networks are also mentioned as a method of perception-based reasoning. The usefulness in artificial intelligence of both fuzzy sets and neural networks, and especially a combination of these, is shown.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2003, 7, 1; 131-145
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Optimization of convolutional neural networks using the fuzzy gravitational search algorithm
Autorzy:
Poma, Yutzil
Melin, Patricia
González, Claudia I.
Martínez, Gabriela E.
Powiązania:
https://bibliotekanauki.pl/articles/384794.pdf
Data publikacji:
2020
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
neural networks
convolutional neural network
fuzzy gravitational search algorithm
deep learning
Opis:
This paper presents an approach to optimize a Convolutional Neural Network using the Fuzzy Gravitational Search Algorithm. The optimized parameters are the number of images per block that are used in the training phase, the number of filters and the filter size of the convolutional layer. The reason for optimizing these parameters is because they have a great impact on performance of the Convolutional Neural Networks. The neural network model presented in this work can be applied for any image recognition or classification applications; nevertheless, in this paper, the experiments are performed in the ORL and Cropped Yale databases. The results are compared with other neural networks, such as modular and monolithic neural networks. In addition, the experiments were performed manually, and the results were obtained (when the neural network is not optimized), and comparison was made with the optimized results to validate the advantage of using the Fuzzy Gravitational Search Algorithm.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2020, 14, 1; 109-120
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Response Integration in Ensemble Neural Networks using The Sugeno Integral and Fuzzy Inference System for Pattern Recognition
Autorzy:
Lopez, M.
Melin, P.
Powiązania:
https://bibliotekanauki.pl/articles/384555.pdf
Data publikacji:
2008
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
ensemble neural networks
fuzzy logic
pattern recognition
fingerprint recognition
Opis:
Combining the outputs of multiple neural networks has been used in Ensemble architectures to improve the decision accuracy in many applications fields, including pattern recognition, in particular for the case of fingerprints. In this paper, we describe a set of experiments performed in order to find the optimal individual networks in terms of the architecture and training rule. In the second step, we used the fuzzy Sugeno Integral to integrate results of the ensemble neural networks. This method combines objective evidence in the form of the network's outputs, with subjective measures of their performance. In the third step, we used a Fuzzy Inference System for the decision process of finding the output of the ensemble neural networks, and finally a comparison of experimental results between Fuzzy Sugeno Integral and the Fuzzy Inference System are presented.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2008, 2, 1; 52-58
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Performance analysis of rough set–based hybrid classification systems in the case of missing values
Autorzy:
Nowicki, Robert K.
Seliga, Robert
Żelasko, Dariusz
Hayashi, Yoichi
Powiązania:
https://bibliotekanauki.pl/articles/2031102.pdf
Data publikacji:
2021
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
rough sets
support vector machine
fuzzy system
neural networks
Opis:
The paper presents a performance analysis of a selected few rough set–based classification systems. They are hybrid solutions designed to process information with missing values. Rough set-–based classification systems combine various classification methods, such as support vector machines, k–nearest neighbour, fuzzy systems, and neural networks with the rough set theory. When all input values take the form of real numbers, and they are available, the structure of the classifier returns to a non–rough set version. The performance of the four systems has been analysed based on the classification results obtained for benchmark databases downloaded from the machine learning repository of the University of California at Irvine.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2021, 11, 4; 307-318
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fuzzy and Neural Control of an Induction Motor
Autorzy:
Denai, M., A.
Attia, S. A.
Powiązania:
https://bibliotekanauki.pl/articles/908003.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
automatyka
fuzzy control
neural networks
induction motor
vector control
speed observer
Opis:
This paper presents some design approaches to hybrid control systems combining conventional control techniques with fuzzy logic and neural networks. Such a mixed implementation leads to a more effective control design with improved system performance and robustness. While conventional control allows different design objectives such as steady state and transient characteristics of the closed loop system to be specified, fuzzy logic and neural networks are integrated to overcome the problems with uncertainties in the plant parameters and structure encountered in the classical model-based design. Induction motors are characterised by complex, highly non-linear and time-varying dynamics and inaccessibility of some states and outputs for measurements, and hence can be considered as a challenging engineering problem. The advent of vector control techniques has partially solved induction motor control problems, because they are sensitive to drive parameter variations and performance may deteriorate if conventional controllers are used. Fuzzy logic and neural network-based controllers are considered as potential candidates for such an application. Three control approaches are developed and applied to adjust the speed of the drive system. The first control design combines the variable structure theory with the fuzzy logic concept. In the second approach neural networks are used in an internal model control structure. Finally, a fuzzy state feedback controller is developed based on the pole placement technique. A simulation study of these methods is presented. The effectiveness of these controllers is demonstrated for different operating conditions of the drive system.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2002, 12, 2; 221-233
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies