Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "feedforward neural network" wg kryterium: Temat


Wyświetlanie 1-5 z 5
Tytuł:
Feedforward neural networks and the forecasting of multi-sectional demand for telecom services: a comparative study of effectiveness for hourly data
Jednokierunkowe sieci neuronowe w prognozowaniu wieloprzekrojowego popytu na usługi telefoniczne – porównawcze badania efektywności dla danych godzinowych
Autorzy:
Kaczmarczyk, P.
Powiązania:
https://bibliotekanauki.pl/articles/2117264.pdf
Data publikacji:
2020
Wydawca:
Szkoła Główna Gospodarstwa Wiejskiego w Warszawie. Wydawnictwo Szkoły Głównej Gospodarstwa Wiejskiego w Warszawie
Tematy:
Prediction System
feedforward neural network
regressive-neural model
forecasting
jednokierunkowa sieć neuronowa
model regresyjno-neuronowy
prognozowanie
system prognostyczny
Opis:
The presented research focuses on the construction of a model to effectively forecast demand for connection services – it is thus relevant to the Prediction System (PS) of telecom operators. The article contains results of comparative studies regarding the effectiveness of neural network models and regressive-neural (integrated) models, in terms of their short-term forecasting abilities for multi-sectional demand of telecom services. The feedforward neural network was used as the neural network model. A regressive-neural model was constructed by fusing the dichotomous linear regression of multi-sectional demand and the feedforward neural network that was used to model the residuals of the regression model (i.e. the residual variability). The response variable was the hourly counted seconds of outgoing calls within the framework of the selected operator network. The calls were analysed within: type of 24 hours (e.g. weekday/weekend), connection categories, and subscriber groups. For both compared models 35 explanatory variables were specified and used in the estimation process. The results show that the regressive-neural model is characterised by higher approximation and predictive capabilities than the non-integrated neural model.
Zaprezentowane wyniki badań są związane z systemem prognostycznym przeznaczonym dla operatorów telekomunikacyjnych, ponieważ są skoncentrowane na sposobie konstrukcji modelu do efektywnego prognozowania popytu na usługi połączeniowe. Artykuł zawiera wyniki porównawczych badań efektywności modelu sieci neuronowej i modelu regresyjno-neuronowego (zintegrowanego) w zakresie krótkookresowego prognozowania zapotrzebowania na usługi telefoniczne. Jako model sieci neuronowej zastosowany został model sieci jednokierunkowej. Model regresyjno-neuronowy został zbudowany na podstawie połączenia dychotomicznej regresji liniowej wieloprzekrojowego popytu i jednokierunkowej sieci neuronowej, która służyła do modelowania reszt modelu regresji (tj. pozostałej zmienności). Zmienną objaśnianą były sumowane co godzinę liczby sekund rozmów wychodzących z sieci wybranego operatora. Połączenia telefoniczne były analizowane pod względem: typów doby, kategorii połączeń i grup abonentów. Wyszczególniono 35 zmiennych objaśniających, które wykorzystano w procesie estymacji obu porównywanych modeli. Stwierdzono, że model regresyjno-neuronowy charakteryzuje się większymi możliwościami aproksymacyjnymi i predykcyjnymi niż niezintegrowany model neuronowy.
Źródło:
Acta Scientiarum Polonorum. Oeconomia; 2020, 19, 3; 13-25
1644-0757
Pojawia się w:
Acta Scientiarum Polonorum. Oeconomia
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Repetitive neurocontroller with disturbance feedforward path active in the pass-to-pass direction for a VSI inverter with an output LC filter
Autorzy:
Ufnalski, B.
Grzesiak, L. M.
Powiązania:
https://bibliotekanauki.pl/articles/200017.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
repetitive control
feedforward neural network
dynamic optimization problem
repetitive disturbance rejection
voltage source inverter
disturbance dual feedforward path
sterowanie powtarzalne
sieci neuronowe
problem optymalizacji dynamicznej
przetwornica napięcia
odrzucanie zakłóceń
Opis:
An enhancement to the previously developed repetitive neurocontroller (RNC) is discussed and investigated in the paper. Originally, the time-base generator (TBG) has been used to produce the only input signal for the neural approximator. The resulting search space makes the dynamic optimization problem (DOP) of shaping the control signal solvable with the help of a function approximator such as the feed-forward neural network (FFNN). The plant under consideration, i.e. a constant-amplitude constant-frequency voltage-source inverter (CACF VSI) with an output LC filter, is assumed to be equipped with the disturbance load current sensor to enable implementation of the disturbance feed-forward (pDFF) path as a part of the non-repetitive subsystem acting in the along the pass p-direction. An investigation has been undertaken to explore potential benefits of using this signal also as an additional input for the RNC to augment the approximation space and potentially enhance the convergence rate of the real-time search process. It is numerically demonstrated in the paper that the disturbance feed-forward path active in the pass-to-pass k-direction (kDFF) improves the dynamics of the repetitive part as well indeed.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2016, 64, 1; 115-125
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forward and inverse kinematics solution of a robotic manipulator using a multilayer feedforward neural network
Autorzy:
Sharkawy, Abdel-Nasser
Powiązania:
https://bibliotekanauki.pl/articles/2201647.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
multilayer neural network
feedforward neural network
forward kinematics
inverse kinematics
2-DOF planar robot
Levenberg-Marquardt algorithm
generated data
sieci neuronowe
sieci neuronowe jednokierunkowe
sieci neuronowe wielowarstwowe
kinematyka prosta
kinematyka odwrotna
algorytm Levenberga-Marquardta
generowanie danych
Opis:
In this paper, a multilayer feedforward neural network (MLFFNN) is proposed for solving the problem of the forward and inverse kinematics of a robotic manipulator. For the forward kinematics solution, two cases are presented. The first case is that one MLFFNN is designed and trained to find solely the position of the robot end-effector. In the second case, another MLFFNN is designed and trained to find both the position and the orientation of the robot end-effector. Both MLFFNNs are designed considering the joints’ positions as the inputs. For the inverse kinematics solution, a MLFFNN is designed and trained to find the joints’ positions considering the position and the orientation of the robot end-effector as the inputs. For training any of the proposed MLFFNNs, data is generated in MATLAB using two different cases. The first case is that data is generated assuming an incremental motion of the robot’s joints, whereas the second case is that data is obtained with a real robot considering a sinusoidal joint motion. The MLFFNN training is executed using the Levenberg-Marquardt algorithm. This method is designed to be used and generalized to any DOF manipulator, particularly more complex robots such as 6-DOF and 7-DOF robots. However, for simplicity, this is applied in this paper using a 2-DOF planar robot. The results show that the approximation error between the desired output and the estimated one by the MLFFNN is very low and it is approximately equal to zero. In other words, the MLFFNN is efficient enough to solve the problem of the forward and inverse kinematics, regardless of the joint motion type.
Źródło:
Journal of Mechanical and Energy Engineering; 2022, 6, 2; 1--17
2544-0780
2544-1671
Pojawia się w:
Journal of Mechanical and Energy Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Forecasting economic and financial indicators by supply of deep and recovery neural networks
Autorzy:
Boyko, N.
Ivanets, A.
Bosik, M.
Powiązania:
https://bibliotekanauki.pl/articles/411261.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Oddział w Lublinie PAN
Tematy:
neural network
deep
recurrent
activation function
feedforward
neuron
hidden layer
stock price prediction
Opis:
This paper studies the potential of the application of the Recurrent Neural Networks, as well as the Deep Neural Networks in the field of the finances and trading. In particular, their use in the stock price predicting software. The concepts of the RNNs and DNNs are provided and explained thoroughly. Both techniques RNNs and DNNs are utilized in the implementation of the stock price predicting software. Two separate versions of the software are created in order to demonstrate the main differences between the algorithms, as well as to determine the best of the two. Each version is thoroughly examined. The comparison of each of the algorithms is performed and highlighted. Examples of the implementations of the software, utilizing each of the algorithms on big volumes of stock data, for stock price prediction are provided. The article summarizes the concept of stock price prediction backed by the popular machine learning algorithms and its application in the nowadays world.
Źródło:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes; 2018, 7, 2; 3-8
2084-5715
Pojawia się w:
ECONTECHMOD : An International Quarterly Journal on Economics of Technology and Modelling Processes
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dynamic fire risk prevention strategy in underground coal gasification processes by means of artificial neural networks
Dynamiczna strategia zapobiegania ryzyku pożarowemu z użyciem sztucznych sieci neuronowych w procesach podziemnego zgazowania węgla
Autorzy:
Krzemień, Alicja
Powiązania:
https://bibliotekanauki.pl/articles/218921.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
dynamiczna strategia zapobiegania ryzyku
prewencja ryzyka pożarowego
podziemne zgazowanie węgla (PZW)
dynamic alarm strategy
fire risk prevention
Generalized Regression Neural Network
Multi-Layer Feedforward Networks (MLFN)
Multivariate Adaptative Regression Splines (MARS)
underground coal gasification (UCG)
Opis:
Based on data collected during an UCG pilot-scale experiment that took place during 2014 at Wieczorek mine, an active mine located in Upper Silesia (Poland), this research focuses on developing a dynamic fire risk prevention strategy addressing underground coal gasification processes (UCG) within active mines, preventing economic and physical losses derived from fires. To achieve this goal, the forecasting performance of two different kinds of artificial neural network models (generalized regression and multi-layer feedforward) are studied, in order to forecast the syngas temperature at the georeactor outlet with one hour of anticipation, thus giving enough time to UCG operators to adjust the amount and characteristics of the gasifying agents if necessary. The same model could be used to avoid undesired drops in the syngas temperature, as low temperature increases precipitation of contaminants reducing the inner diameter of the return pipeline. As a consequence the whole process of UGC might be stopped. Moreover, it could allow maintaining a high temperature that will lead to an increased efficiency, as UCG is a very exothermic process. Results of this research were compared with the ones obtained by means of Multivariate Adaptative Regression Splines (MARS), a non-parametric regression technique able to model non-linearities that cannot be adequately modelled using other regression methods. Syngas temperature forecast with one hour of anticipation at the georeactor outlet was achieved successfully, and conclusions clearly state that generalized regression neural networks (GRNN) achieve better forecasts than multi-layer feedforward networks (MLFN) and MARS models.
Przedstawione w niniejszej pracy badania koncentrują się na opracowaniu dynamicznej strategii zapobiegania ryzyku pożarowemu w procesach podziemnego zgazowania węgla (PZW) w czynnych kopalniach. Celem badań jest zapobieganie ekonomicznym i fizycznym stratom wynikającym z pożarów. W pracy wykorzystano dane zebrane podczas pilotowego eksperymentu podziemnego zgazowania węgla, który odbył się w 2014 r. w czynnej Kopalni Węgla Kamiennego „Wieczorek”, zlokalizowanej na Górnym Śląsku. W artykule przeanalizowano działanie dwóch różnych modeli sztucznych sieci neuronowych, tj. sieci neuronowych realizujących uogólnione regresje GRNN oraz wielowarstwowych sieci perceptronowych MLFN, w celu prognozowania temperatury gazu syntezowego na wyjściu z georeaktora z godzinnym wyprzedzeniem. Informacja na temat temperatury na godzinę „do przodu” daje wystarczająco dużo czasu operatorowi procesu PZW na dostosowanie ilości i właściwości czynników zgazowujących do zaistniałej sytuacji. Ten sam model można zastosować do uniknięcia niepożądanych spadków temperatury gazu syntezowego. Niska temperatura gazu sprzyja wytrącaniu się osadu (substancji smolistych), powodując zmniejszanie średnicy rurociągu odbioru gazu, co w konsekwencji może prowadzić do całkowitego zatrzymania procesu zgazowania. Model pozwala również na utrzymanie wysokiej temperatury, która prowadzi do zwiększonej wydajności procesu PZW, szczególnie biorąc pod uwagę, że PZW jest procesem bardzo egzotermicznym. Wyniki zrealizowanych badań porównano z rezultatami uzyskanymi za pomocą modelu MARS – nieparametrycznej metody regresji zdolnej do modelowania zależność nieliniowych, których nie można odpowiednio modelować przy użyciu innych metod regresji. Prognoza temperatury gazu na godzinę „do przodu” na wylocie georeaktora została osiągnięta z powodzeniem, a wnioski jasno pokazują, że sieci neuronowe realizujące uogólnione regresje (GRNN – Generalized Regression Neural Networks) osiągają lepsze rezultaty niż wielowarstwowe sieci jednokierunkowe (MLFN – Multi-Layer Feedforward Networks) i modele MARS (Multivariate Adaptative Regression Splines).
Źródło:
Archives of Mining Sciences; 2019, 64, 1; 3-19
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies