Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "derivation– inflection gradient" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Idiosyncratic frequency as a measure of derivation vs. inflection
Autorzy:
Copot, Maria
Mickus, Timothee
Bonami, Olivier
Powiązania:
https://bibliotekanauki.pl/articles/24201226.pdf
Data publikacji:
2022
Wydawca:
Polska Akademia Nauk. Instytut Podstaw Informatyki PAN
Tematy:
morphology
derivation– inflection gradient
distributional semantics
Opis:
There is ongoing discussion about how to conceptualize the nature of the distinction between inflection and derivation. A common approach relies on qualitative differences in the semantic relationship between inflectionally versus derivationally related words: inflection yields ways to discuss the same concept in different syntactic contexts, while derivation gives rise to words for related concepts. This differential can be expected to manifest in the predictability of word frequency between words that are related derivationally or inflectionally: predicting the token frequency of a word based on information about its base form or about related words should be easier when the two words are in an inflectional relationship, rather than a derivational one. We compare prediction error magnitude for statistical models of token frequency based on distributional and frequency information of inflectionally or derivationally related words in French. The results conform to expectations: it is easier to predict the frequency of a word from properties of an inflectionally related word than from those of a derivationally related word. Prediction error provides a quantitative, continuous method to explore differences between individual processes and differences yielded by employing different predicting information, which in turn can be used to draw conclusions about the nature and manifestation of the inflection–derivation distinction.
Źródło:
Journal of Language Modelling; 2022, 10, 2; 193--240
2299-856X
2299-8470
Pojawia się w:
Journal of Language Modelling
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies