Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "asymptotic estimation" wg kryterium: Temat


Wyświetlanie 1-6 z 6
Tytuł:
On Fourier coefficients of some classes of functions and their applications in approximation theory
Autorzy:
Ibrahimov, E.J.
Powiązania:
https://bibliotekanauki.pl/articles/746459.pdf
Data publikacji:
2014
Wydawca:
Polskie Towarzystwo Matematyczne
Tematy:
Fourier-Gegenbauer series
convergence
asymptotic estimation
Gegenbauer transform
strong derivative and of Gegenbauer integral
generalized shift function
Opis:
In the paper, the behavior of Fourier coefficients of some classes of functions on an arbitrary orthogonal system is studied. The estimates of order of convergence to zero of Fourier-Gegenbauer coefficients are found. These estimates are precise and are of terminal character. The obtained results are used in convergence of Fourier-Gegenbauer series.
Źródło:
Commentationes Mathematicae; 2014, 54, 2
0373-8299
Pojawia się w:
Commentationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Bayesian parameter estimation and adaptive control of Markov processes with time-averaged cost
Autorzy:
Borkar, V.
Associate, S.
Powiązania:
https://bibliotekanauki.pl/articles/1339007.pdf
Data publikacji:
1998
Wydawca:
Polska Akademia Nauk. Instytut Matematyczny PAN
Tematy:
time-averaged cost
adaptive control
asymptotic optimality
cost-biased estimate
Bayesian estimation
Opis:
This paper considers Bayesian parameter estimation and an associated adaptive control scheme for controlled Markov chains and diffusions with time-averaged cost. Asymptotic behaviour of the posterior law of the parameter given the observed trajectory is analyzed. This analysis suggests a "cost-biased" estimation scheme and associated self-tuning adaptive control. This is shown to be asymptotically optimal in the almost sure sense.
Źródło:
Applicationes Mathematicae; 1998-1999, 25, 3; 339-358
1233-7234
Pojawia się w:
Applicationes Mathematicae
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the nonparametric estimation of the conditional hazard estimator in a single functional index
Autorzy:
Gagui, Abdelmalek
Chouaf, Abdelhak
Powiązania:
https://bibliotekanauki.pl/articles/2107053.pdf
Data publikacji:
2022-06-14
Wydawca:
Główny Urząd Statystyczny
Tematy:
single functional index
conditional hazard function
nonparametric estimation
α-mixing dependency
asymptotic normality
functional data
Opis:
This paper deals with the conditional hazard estimator of a real response where the variable is given a functional random variable (i.e it takes values in an infinite-dimensional space). Specifically, we focus on the functional index model. This approach offers a good compromise between nonparametric and parametric models. The principle aim is to prove the asymptotic normality of the proposed estimator under general conditions and in cases where the variables satisfy the strong mixing dependency. This was achieved by means of the kernel estimator method, based on a single-index structure. Finally, a simulation of our methodology shows that it is efficient for large sample sizes.
Źródło:
Statistics in Transition new series; 2022, 23, 2; 89-105
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On the smoothed parametric estimation of mixing proportion under fixed design regression model
Autorzy:
Ramakrishnaiah, Y. S.
Trivedi, Manish
Satish, Konda
Powiązania:
https://bibliotekanauki.pl/articles/1359251.pdf
Data publikacji:
2019-04-25
Wydawca:
Główny Urząd Statystyczny
Tematy:
mixture of distributions
mixing proportion
smoothed parametric estimation
fixed design regression model
mean square error
optimal band width
strong consistency
asymptotic normality
Opis:
The present paper revisits an estimator proposed by Boes (1966) - James (1978), herein called BJ estimator, which was constructed for estimating mixing proportion in a mixed model based on independent and identically distributed (i.i.d.) random samples, and also proposes a completely new (smoothed) estimator for mixing proportion based on independent and not identically distributed (non-i.i.d.) random samples. The proposed estimator is nonparametric in true sense based on known “kernel function” as described in the introduction. We investigated the following results of the smoothed estimator under the non-i.i.d. set-up such as (a) its small sample behaviour is compared with the unsmoothed version (BJ estimator) based on their mean square errors by using Monte-Carlo simulation, and established the percentage gain in precision of smoothed estimator over its unsmoothed version measured in terms of their mean square error, (b) its large sample properties such as almost surely (a.s.) convergence and asymptotic normality of these estimators are established in the present work. These results are completely new in the literature not only under the case of i.i.d., but also generalises to non-i.i.d. set-up.
Źródło:
Statistics in Transition new series; 2019, 20, 1; 87-102
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Asymptotic normality of conditional density and conditional mode in the functional single index model
Asymptotyczna normalność rozkładu warunkowej gęstości i warunkowej dominanty modelu jednowskaźnikowego
Autorzy:
Akkal, Fatima
Kadiri, Nadia
Rabhi, Abbes
Powiązania:
https://bibliotekanauki.pl/articles/1182026.pdf
Data publikacji:
2021
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
asymptotic normality
conditional density
functional single index model functional random variable nonparametric estimation
asymptotyczna normalność
gęstość warunkowa
funkcjonalny model pojedynczego wskaźnika
funkcjonalna zmienna losowa
estymacja nieparametryczna
Opis:
Celem niniejszego artykułu jest zbadanie nieparametrycznej estymacji warunkowej gęstości skalarnej zmiennej zależnej Y, przy założeniu, że zmienna objaśniająca X przyjmuje wartość w przestrzeni Hilberta, gdy próbka obserwacji jest traktowana jako niezależne zmienne losowe o identycznym rozkładzie i są one połączone jedną funkcjonalną strukturą indeksu. Przede wszystkim wprowadzono estymator typu jądrowego dla warunkowej funkcji gęstości (cond-df). Następnie określono asymptotyczne właściwości warunkowego estymatora gęstości, gdy obserwacje są połączone ze strukturą pojedynczego indeksu, i wyprowadzano centralne twierdzenie graniczne (CLT) warunkowego estymatora gęstości w celu zaprezentowania asymptotycznej normalności estymacji jądrowej tego modelu. W aplikacji przedstawiono dominantę warunkową w funkcjonalnym modelu z pojedynczym indeksem, a także asymptotyczny (1-) przedział ufności funkcji dominanty warunkowej dla 0 < < 1. Na koniec omówiono estymację indeksu funkcjonalnego metodą pseudomaksymalnej wiarygodności.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2021, 25, 1; 1-24
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Asymptotic Normality of Single Functional Index Quantile Regression for Functional Data with Missing Data at Random
Asymptotyczna normalność regresji kwantylowej pojedynczego wskaźnika funkcyjnego dla danych funkcjonalnych z losowymi brakującymi danymi
Autorzy:
Allal, Anis
Kadiri, Nadia
Rabhi, Abbes
Powiązania:
https://bibliotekanauki.pl/articles/31233546.pdf
Data publikacji:
2024
Wydawca:
Wydawnictwo Uniwersytetu Ekonomicznego we Wrocławiu
Tematy:
asymptotic normality
functional data analysis
functional single-index process
missing at random
nonparametric estimation
small ball probability
asymptotyczna normalność
funkcjonalna analiza danych
funkcjonalny proces poje- dynczego indeksu
estymator jądra
losowe braki
estymacja nieparametryczna
prawdopodobieństwo małej kuli
Opis:
This work addresses the problem of the nonparametric estimation of the regression function, namely the conditional distribution and the conditional quantile in the single functional index model (SFIM) under the independent and identically distributed condition with randomly missing data. The main result of this study was the establishment of the asymptotic properties of the estimator, such as the almost complete convergence rates. Moreover, the asymptotic normality of the constructs was obtained under certain mild conditions. Lastly, the authors discussed how to apply the result to construct confidence intervals.
W artykule autorzy prowadzą rozważania dotyczące problemu nieparametrycznej estymacji funkcji regresji, a mianowicie rozkładu warunkowego i kwantyla warunkowego w modelu pojedynczego indeksu funkcjonalnego (SFIM) przy założeniu niezależnych i z identycznym rozkładem danych z losowymi brakami danych. Głównym rezultatem przeprowadzonych badań było ustalenie asymptotycznych właściwości estymatora, takich jak prawie całkowite współczynniki zbieżności. Co więcej, asymptotyczną normalność konstruktów uzyskano dla pewnych łagodnych warunków. Na koniec omówiono, jak zastosować uzyskany wynik do skonstruowania przedziałów ufności.
Źródło:
Econometrics. Ekonometria. Advances in Applied Data Analytics; 2024, 28, 1; 26-38
1507-3866
Pojawia się w:
Econometrics. Ekonometria. Advances in Applied Data Analytics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-6 z 6

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies