Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Typically real functions" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Subclasses of typically real functions determined by some modular inequalities
Autorzy:
Koczan, Leopold
Trąbka-Więcław, Katarzyna
Powiązania:
https://bibliotekanauki.pl/articles/747067.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Typically real functions
majorization
subordination
Opis:
Let \(\mathrm{T}\) be the family of all typically real functions, i.e. functions that are analytic in the unit disk \(\Delta := \{ z \in \mathbb{C} : |z|<1 \}\), normalized by \(f(0)=f'(0)-1=0\) and such that Im \(z\) Im \(f(z)\) \(\geq 0\) for \(z \in \Delta\). Moreover, let us denote: \(\mathrm{T}^{(2)}:=  \{f \in \mathrm{T}: f(z)=-f(-z) \text{ for } z \in \Delta \}\) and \(\mathrm{T}^{M,g} :=  \{ f \in \mathrm{T}: f \prec Mg \text{ in } \Delta \}\), where \(M>1\), \(g \in \mathrm{T} \cap \mathrm{S}\) and \(\mathrm{S}\) consists of all analytic functions, normalized and univalent in \(\Delta\).We investigate  classes in which the subordination is replaced with the majorization and the function \(g\) is typically real but does not necessarily univalent, i.e. classes \(\{ f \in \mathrm{T}: f \ll Mg \text{ in } \Delta \}\), where \(M>1\), \(g \in \mathrm{T}\), which we denote by \(\mathrm{T}_{M,g}\). Furthermore, we broaden the class \(\mathrm{T}_{M,g}\) for the case \(M \in (0,1)\) in the following  way:\(\mathrm{T}_{M,g} = \left\{ f \in \mathrm{T} : |f(z)| \geq M |g(z)| \text{ for } z \in \Delta \right\}\), \(g \in \mathrm{T}\).
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2010, 54, 1
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An extension of typically-real functions and associated orthogonal polynomials
Autorzy:
Naraniecka, Iwona
Szynal, Jan
Tatarczak, Anna
Powiązania:
https://bibliotekanauki.pl/articles/747098.pdf
Data publikacji:
2011
Wydawca:
Uniwersytet Marii Curie-Skłodowskiej. Wydawnictwo Uniwersytetu Marii Curie-Skłodowskiej
Tematy:
Typically-real functions
univalent functions
local univalence
univalence
starlikeness
Chebyshev polynomials
orthogonal polynomials
Opis:
Two-parameters extension of the family of typically-real functions is studied. The definition is obtained by the Stjeltjes integral formula. The kernel function in this definition serves as a generating function for some family of orthogonal polynomials generalizing Chebyshev polynomials of the second kind. The results of this paper concern the exact region of local univalence, bounds for the radius of univalence, the coefficient problems within the considered family as well as the basic properties of obtained orthogonal polynomials.
Źródło:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica; 2011, 65, 2
0365-1029
2083-7402
Pojawia się w:
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies