- Tytuł:
- Melanin production by Pseudomonas sp. and in silico comparative analysis of tyrosinase gene sequences
- Autorzy:
-
Deepthi, S.S.
Reddy, M.K.
Mishra, N.
Agsar, D. - Powiązania:
- https://bibliotekanauki.pl/articles/2096822.pdf
- Data publikacji:
- 2021
- Wydawca:
- Polska Akademia Nauk. Czytelnia Czasopism PAN
- Tematy:
-
Pseudomonas sps.
Homo sapiens
natural pigment
melanogenic genes
common central domain - Opis:
- Background . Melanin finds enormous applications in different industries for its unique photoprotective and anti-oxidant properties. Due to its emerging demand, scientific researchers are putting efforts to unravel more microorganisms with a potential of producing melanin on large scale. Hence, the present study was aimed at the isolation of extracellular melanin producing microorganisms from lime quarries of Karnataka, India. Besides this, the tyrosinase gene governing melanin synthesis in different organisms were compared in silico to understand its evolutionary aspects. Material and methods . Melanin producing microorganisms were screened on tyrosine gelatin beef extract agar medium. Potential isolate was explored for submerged production of melanin in broth containing L-tyrosine. Melanin was characterized by UV-Vis spectroscopy, thin layer and high performance liquid chromatographic techniques. Antibacterial activity of melanin was performed by agar well assay. Comparative tyrosinase gene sequence analysis was performed by using Geneious 2021.1 trial version software. Results . Pseudomonas otitidis DDB2 was found to be potential for melanin production. No antibacterial activity was exerted by the melanin against tested pathogens. The in silico studies showed that the common central domain of tyrosinase protein sequence of selected Pseudomonas sps. exhibited 100% identity with the common central domain of Homo sapiens tyrosinase (NP_000363.1). Conclusions . Our study shows the production of melanin in good quantities by the isolate Pseudomonas otitidis DDB2 which can be explored for scale-up process. Since the melanin formed is of eumelanin type and the tyrosinase gene sequence of several Pseudomonas sp. showed relatedness to humans, this molecule may be further developed for sunscreen formulations.
- Źródło:
-
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2021, 102, 4; 411-424
0860-7796 - Pojawia się w:
- BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
- Dostawca treści:
- Biblioteka Nauki