Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "NW Europe" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
The erratic rocks of the Upper Cretaceous Chalk of England: how did they get there, ice transport or other means?
Autorzy:
Jeans, Christopher V.
Platten, Ian M.
Powiązania:
https://bibliotekanauki.pl/articles/1835594.pdf
Data publikacji:
2020
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
chalk
erratics
gastroliths
fast ice
palaeogeography
NW Europe
kreda
eratyk
stały lód brzegowy
paleogeografia
Europa północno-zachodnia
Opis:
Rare erratic clasts - extraneous rock types - occur in the Upper Cretaceous Chalk, including a local basal facies, the Cambridge Greensand. The underlying Upper Albian Gault Clay and the Hunstanton Red Chalk Formations have also yielded erratics. The discovery of these erratics, their description and the development of hypotheses to explain their origins and significance are reviewed. They became the subject of scientific interest with the interpretation of a particularly large example “The Purley Boulder” by Godwin-Austen (1858) as having been transported to its depositional site in the Chalk Sea by drifting coastal ice. Thin section petrography (1930–1951) extended knowledge of their diverse provenance. At the same time the Chalk Sea had become interpreted as warm, so drifting ice was considered out of context, and the preferred agents of transport were entanglement in the roots of drifting trees, as holdfasts of floating marine algae, or as stomach stones of marine reptiles or large fish. Reconsideration of their occurrence, variable nature and sedimentary setting suggests that there are three zones in the English Chalk where erratics may be less rare (1) near the base of the Cenomanian in the Cambridge area, (2) the Upper Cenomanian-Middle Turonian in Surrey, and (3) the Upper Coniacian and Lower Santonian of Kent. The assemblage from each level and their sedimentary setting is subtly different. Present evidence suggests that the erratics found in the Upper Albian-Lower Cenomanian and the Upper Cenomanian-Middle Turonian zones represent shallow water and shoreline rocks that were transported into the Chalk Sea by coastal ice (fast-ice) that enclosed coastal marine sediments as it froze. The Upper Coniacian and Lower Santonian erratics from Rochester and Gravesend in Kent are gastroliths.
Źródło:
Acta Geologica Polonica; 2021, 71, 3; 287-304
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Redox conditions, glacio-eustasy, and the status of the Cenomanian-Turonian Anoxic Event: new evidence from the Upper Cretaceous Chalk of England
Autorzy:
Jeans, Christopher V.
Wray, David S.
Williams, C. Terry
Bland, David J.
Wood, Christopher J.
Powiązania:
https://bibliotekanauki.pl/articles/1835600.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
Cenomanian–Turonian Anoxic Event
eustatic lithocycles
glacial associations
redox conditions
cerium anomalies
carbon isotopes
NW Europe
Japan
kreda
cenoman
turon
asocjacje
redoks
izotopy węgla
północno-zachodnia Europa
Japonia
Opis:
The nature of the Cenomanian–Turonian Oceanic Anoxic Event (CTOAE) and its δ13 C Excursion is considered in the light of (1) the stratigraphical framework in which the CTOAE developed in the European shelf seas, (2) conclusions that can be drawn from new detailed investigations of the Chalk succession at three locations in England, at Melton Ross and Flixton in the Northern Province where organic-rich ‘black bands’ are present, and at Dover in the Southern Province (part of the Anglo-Paris Basin) where they are absent, and (3) how these conclusion fit in with the present understanding of the CTOAE. The application of the cerium anomaly method (German and Elderfield 1990) at Dover, Melton Ross and Flixton has allowed the varying palaeoredox conditions in the Chalk Sea and its sediments to be related to the acid insoluble residues, organic carbon, δ18O (calcite), δ13C (calcite), δ13C (organic matter), Fe 2+ and Mn2+ (calcite), and P/TiO2 (acid insoluble residue). This has provided evidence that the initial stages of the δ13C Excursion in England were related to (1) a drop of sea level estimated at between 45 and 85 metres, (2) influxes of terrestrial silicate and organic detritus from adjacent continental sources and the reworking of exposed marine sediments, and (3) the presence of three cold water phases (named the Wood, Jefferies and Black) associated with the appearance of the cold-water pulse fauna during the Plenus Cold Event. Conditions in the water column and in the chalk sediment were different in the two areas. In the Northern Province, cerium-enriched waters and anoxic conditions were widespread; the δ13C pattern reflects the interplay between the development of anoxia in the water column and the preservation of terrestrial and marine organic matter in the black bands; here the CTOAE was short-lived (~0.25 Ma) lasting only the length of the Upper Cenomanian Metoicoceras geslinianum Zone. In the Southern Province, water conditions were oxic and the δ13C Excursion lasted to the top of the Lower Turonian Watinoceras devonense Zone, much longer (~1.05 Ma) than in the Northern Province. These differences are discussed with respect to (1) the Cenomanian–Turonian Anoxic Event (CTAE) hypothesis when the ocean-continent-atmosphere systems were linked, (2) limitations of chemostratigraphic global correlation, and (3) the Cenomanian-Turonian Anoxic Event Recovery (CTOAER), a new term to define the varying lengths of time it took different oceans and seas to recover once the linked ocean-continent-atmosphere system was over. The possibility is considered that glacio-eustasy (the glacial control hypothesis of Jeans et al. 1991) with the waxing and waning of polar ice sheets, in association with the degassing of large igneous provinces, may have set the scene for the development of the Cenomanian-Turonian Anoxic Event (CTAE).
Źródło:
Acta Geologica Polonica; 2021, 71, 2; 103-152
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sulfur isotope patterns of iron sulfide and barite nodules in the Upper Cretaceous Chalk of England and their regional significance in the origin of coloured chalks
Autorzy:
Jeans, C. V.
Turchyn, A. V.
Hu, X.-F.
Powiązania:
https://bibliotekanauki.pl/articles/139390.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
diagenesis
iron sulfide nodules
δ34S values
bacterial control
coloured chalks
volcanogenic events
NW Europe
kreda
diageneza
siarczan żelaza
wartości δ34S
kontrola bakteryjna
Europa
Opis:
The relationship between the development of iron sulfide and barite nodules in the Cenomanian Chalk of England and the presence of a red hematitic pigment has been investigated using sulfur isotopes. In southern England where red and pink chalks are absent, iron sulfide nodules are widespread. Two typical large iron sulfide nodules exhibit δ34S ranging from -48.6‰ at their core to -32.6‰ at their outer margins. In eastern England, where red and pink chalks occur in three main bands, there is an antipathetic relationship between the coloured chalks and the occurrence of iron sulfide or barite nodules. Here iron sulfide, or its oxidised remnants, are restricted to two situations: (1) in association with hard grounds that developed originally in chalks that contained the hematite pigment or its postulated precursor FeOH3, or (2) in regional sulfidization zones that cut across the stratigraphy. In the Cenomanian Chalk exposed in the cliffs at Speeton, Yorkshire, pyrite and marcasite (both iron sulfide) nodules range in δ34S from -34.7‰ to +40.0‰. In the lower part of the section δ34S vary from -34.8‰ to +7.8‰, a single barite nodule has δ34S between +26.9‰ and +29.9‰. In the middle part of the section δ34S ranges from +23.8‰ to +40.0‰. In the sulfidization zones that cut across the Cenomanian Chalk of Lincolnshire the iron sulfide nodules are typically heavily weathered but these may contain patches of unoxidised pyrite. In these zones, δ34S ranges from -32.9‰ to +7.9‰. The cross-cutting zones of sulfidization in eastern England are linked to three basement faults – the Flamborough Head Fault Zone, the Caistor Fault and the postulated Wash Line of Jeans (1980) – that have affected the deposition of the Chalk. It is argued that these faults have been both the conduits by which allochthonous fluids – rich in hydrogen sulfide/sulfate, hydrocarbons and possibly charged with sulfate-reducing bacteria – have penetrated the Cenomanian Chalk as the result of movement during the Late Cretaceous or Cenozoic. These invasive fluids are associated with (1) the reduction of the red hematite pigment or its praecursor, (2) the subsequent development of both iron sulfides and barite, and (3) the loss of overpressure in the Cenomanian Chalk and its late diagenetic hardening by anoxic cementation. Evidence is reviewed for the origin of the red hematite pigment of the coloured chalks and for the iron involved in the development of iron sulfides, a hydrothermal or volcanogenic origin is favoured.
Źródło:
Acta Geologica Polonica; 2016, 66, 2; 227-256
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
O "arktycznych" i "atlantyckich" mechanizmach sterujących zmiennością temperatury powietrza na obszarze Europy i północo-zachodniej Azji
On "Arctic" and "Atlantic" mechanisms controlling the changeability in air temperature in the region of Europe and NW Asia
Autorzy:
Marsz, A. A.
Styszyńska, A.
Powiązania:
https://bibliotekanauki.pl/articles/260919.pdf
Data publikacji:
2006
Wydawca:
Stowarzyszenie Klimatologów Polskich
Tematy:
zmiany temperatury powietrza
zmiany temperatury wody powierzchniowej
NAO
Oscylacja Eurazjatycka
AO
Arktyka Atlantycka
NW Azja
Europa
Atlantyk Północny
NW Asia
Europe
changes in pressure
changes in air temperature
Opis:
Praca omawia wpływ zmian ciśnienia atmosferycznego w Arktyce Atlantyckiej (dalej AA) na kształtowanie zmienności temperatury powietrza na obszarze Europy (na N od 40°N) i NW Azji (do 120°E). Wpływ zmian ciśnienia w AA na temperaturę powietrza zaznacza się we wszystkich, z wyjątkiem czerwca, miesiącach roku, tworząc charakterystyczny cykl z maksimum siły oddziaływania zimą. Zimowe (01-03) zmiany ciśnienia w AA objaśniają od kilkunastu do ponad 60% zmienności temperatury rocznej (z maksimum na obszarze wokół-bałtyckim; 1951-2000). W pracy analizuje się współdziałanie zmian ciśnienia w Arktyce Atlantyckiej ze zmianami ciśnienia w Wyżu Syberyjskim w kształtowaniu zmienności temperatury powietrza na obszarze Europy i NW Azji. Dyskutuje się również kwestie związków zmian ciśnienia w AA z NAO, AO oraz frekwencją makrotypów cyrkulacji środkowotroposferycznej wg klasyfikacji Wangengejma-Girsa. Wyniki analiz wykazują, że o zimowych zmianach ciśnienia w AA decyduje wcześniejszy rozkład zasobów ciepła w wodach Atlantyku Północnego.
The research on relations between climatic elements of Europe and the Arctic has indicated that there are significant correlations between changes in atmospheric pressure in the Atlantic part of the Arctic and air temperature in northern Europe and NW Asia. The strongest correlations are observed between changes in pressure over relatively small area of the Atlantic part of the Arctic (72.5 - 80.0°N, 10.0 - 25.0°E), in addition, the point over which changes in pressure explain most of changes in air temperature is located 75.0°N, 015.0°E. Pressure at this point is further referred as P[75,15] with an index denoting a month (e.g. P[75,15]03 denotes mean pressure in March and P[75,15]01-03 defines mean pressure at this point from the period January till March). Over the Atlantic part of the Arctic within the pressure area there is no marked climatic centre which could be regarded as the centre of atmospheric activity. The research made use of monthly series of SLP values (reanalysis: set NOAA.NCEP-NCAR. CDAS-1.MONTHLY.Intrinsic.MSL.pressure) and the values of monthly air temperature from 211 stations (Fig. 1). The observational period common for both elements covers 50 years, i.e. the period from January 1951 to December 2000. The character of correlations between P[75,15] and air temperature in the following months, from June to May, and their spatial distribution have been presented by isocorrelates maps (Fig. 2). Changes in the strength of correlations between P[75,15] and the temperature over Europe and NW Asia form a clear annual cycle interrupted in June. In June the correlations between P[75,15] and air temperature became very weak and not significant over the most of the area and not continuous in space. During the months after June these correlations got stronger and stronger reaching their maximum during cold season (from November to April). This maximum is located in the region adjacent to the Baltic Sea, where annual and winter (01-03) changes in P[75,15] explain from more than 60% to 50% of annual temperature variances (Fig. 3) The strongest correlation between P[75,15] and air temperature in Siberia is located N of Baikal, where winter (01-03) changes in P[75,15] explain 43-45% of annual temperature variances. At the end of the cold season a visible delay of the decrease in the strength of correlation is observed in the region of Siberia in relation to the European region (in Europe after March, in Siberia after April). Variability in winter and annual values of pressure at 75°N, 015°E also indicates relatively strong correlations with the changeability in temperature of the warmest month in the year in the west and central region of Europe. The annual variability in P[75,15] explains from 40% to 30% changeability of maximum temperature in the region extending from the Atlantic coast of France to central Germany. This belt extends farther east towards the Baltic Sea. The latter correlation has not been explained in this work. The analysis of correlations of changes in pressure at 75°N, 15°E with NAO indicates to the occurrence of statistically significant correlations during months of cold season in the year (October - March, May and June; Tab. 2). Similar analysis of correlations of changes in P[75,15] with AO index (Arctic Oscillation) shows strong and highly statistically significant correlations in all months of the year with maximum falling in January and February. Annual changes in P[75,15], i.e. in pressure at one point explain 73% annual changeability in AO index (r = 0.86) and the winter changeability in (December - March) P[75,15] explains 78% of winter changeability in AO index (r = 0.88) which is the first vector EOF of pressure field (1000 hPa) covering the area from 20°N to the North Pole (90°N), that is the most area of the Northern Hemisphere. This analysis shows that the changes in pressure at the point 75°N, 15°E result in intensification of cyclogenesis over west and central part of the North Atlantic and the consequent long waves (waves of W type following Wangengejm-Girs classification) cause that anticyclones formed over the Atlantic will direct towards Fram Strait through the region of Iceland. The above process has nothing or almost nothing to do with the form of changeability in polar strato-spheric eddy, as assumed by Tomphson and Wallace (1998, 2000, Thompson, Wallace, Hegerl 2000) to be essential for the Arctic Oscillation functioning. Occurrence of correlations between P[75,15] and air temperature over vast areas from 10°W to 130°E suggests that also changes in pressure in the Siberian High are engaged in this process. Theanalysis shows that in a yearly process, changes in pressure in the Atlantic part of the Arctic and in the Siberian High occur in opposite phases (see Tab.1). Barometric gradient between the Atlantic part of the Arctic and the Siberian High becomes extremely strong during the cold season of the year contributing to "pumping" air from eastern Europe to the far end of the Siberia. During the summer season the gradient becomes very weak as the about-turn takes place. The cooperation of changes in pressure in the Atlantic part of the Arctic and pressure in region located farther Baikal -- Mongolia results in very strong oscillation which partly can be identified with Euro-Asian Oscillation (Monahan et al. 2000). During winter season interannual changes in pressure in the Siberian High are relatively small and explain 10.4% variances of barometric gradient between P[75,15] and point 45°N, 110°E (the region of the centre of the Siberian High), whereas the interannual changes in P[75,15] explain 77.5% of variances in this gradient. This means that in the cold season of the year the intensity of air transfer from the west towards Asian land depends on variability in pressure in the Atlantic part of the Arctic. Because in the months of the cold season of the year NAO is the strongest and significantly correlated with changes in P[75,15] therefore, a two-element, with the same phase "conveyor belt" is formed, which during positive phases of NAO transfers the air from over the Atlantic to Europe (NAO) and then towards and into the Siberia (Euro-Asian Oscillation). P[75,15] during cold season months of the year (01-03) indicates statistically significant negative trend (-0.153 hPa/year; p < 0.006) which enables to state that the observed, over the years 1951-2000, increase in air temperature in the Siberia can be, in great extent, attributed to the activity of the above described circulation mechanism. The analysis of reasons for interannual changes in P[75,15] has indicated that there are strong and significant correlations between variability in P[75,15] and the earlier variability in the thermal conditions of the Atlantic Ocean. A very important role in this relation plays thermal condition of three sea areas, i.e. waters of the subtropical region of central part of the North Atlantic (characterized by SST anomalies in grid 34°N, 40°W from August and September), waters of the middle latitudes zone of the central part of the North Atlantic (characterized by SST anomalies from August and September in grid 54°N, 30°W) and waters of the North Atlantic Current from the approach to the Farero-Shetland Passage (characterized by SST anomalies from January and April in grid 60°N, 10°W). Thermal state of these three sea water areas (see formulas [1] and [2]) explains 58% changeability in P[75,15] which will be observed in the following winter (DJFM). The cause of the described correlation is attributed to the fact that the earlier thermal state of the above mentioned sea areas controls the occurrence of long waves, of W and E Wangengejm-Girs type during the following winter. Further, these waves influence the occurrence of low cyclones over the Atlantic part of the Arctic during winter resulting in adequate changes in mean monthly pressure. As a result, it can be stated that the interannual variability in air temperature over vast areas of Europe and over NW Asia is influenced by the processes observed over the North Atlantic and the Atlantic part of the Arctic. The research covers years 1971-2003 (ano-malies in SST taken from 1970-2002) due to the fact that the data have been not only accessible and reliable but also homogeneous with respect to climatological data of SST (CACSST data set (Reynolds and Roberts 1987, Reynolds 1988) and SST OI v.1. (Reynolds et al. 2002).
Źródło:
Problemy Klimatologii Polarnej; 2006, 16; 47-89
1234-0715
Pojawia się w:
Problemy Klimatologii Polarnej
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies