Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Vestergaard, Preben" wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
On well-covered graphs of odd girth 7 or greater
Autorzy:
Randerath, Bert
Vestergaard, Preben
Powiązania:
https://bibliotekanauki.pl/articles/743557.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
well-covered
independence number
domination number
odd girth
Opis:
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [14] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. One of the most challenging problems in this area, posed in the survey of Plummer [15], is to find a good characterization of well-covered graphs of girth 4. We examine several subclasses of well-covered graphs of girth ≥ 4 with respect to the odd girth of the graph. We prove that every isolate-vertex-free well-covered graph G containing neither C₃, C₅ nor C₇ as a subgraph is even very well-covered. Here, a isolate-vertex-free well-covered graph G is called very well-covered, if G satisfies α(G) = n/2. A vertex set D of G is dominating if every vertex not in D is adjacent to some vertex in D. The domination number γ(G) is the minimum order of a dominating set of G. Obviously, the inequality γ(G) ≤ α(G) holds. The family $_{γ=α}$ of graphs G with γ(G) = α(G) forms a subclass of well-covered graphs. We prove that every connected member G of $_{γ=α}$ containing neither C₃ nor C₅ as a subgraph is a K₁, C₄,C₇ or a corona graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 159-172
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Domination in partitioned graphs
Autorzy:
Tuza, Zsolt
Vestergaard, Preben
Powiązania:
https://bibliotekanauki.pl/articles/743565.pdf
Data publikacji:
2002
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
graph
dominating set
domination number
vertex partition
Opis:
Let V₁, V₂ be a partition of the vertex set in a graph G, and let $γ_i$ denote the least number of vertices needed in G to dominate $V_i$. We prove that γ₁+γ₂ ≤ [4/5]|V(G)| for any graph without isolated vertices or edges, and that equality occurs precisely if G consists of disjoint 5-paths and edges between their centers. We also give upper and lower bounds on γ₁+γ₂ for graphs with minimum valency δ, and conjecture that γ₁+γ₂ ≤ [4/(δ+3)]|V(G)| for δ ≤ 5. As δ gets large, however, the largest possible value of (γ₁+γ₂)/|V(G)| is shown to grow with the order of (logδ)/(δ).
Źródło:
Discussiones Mathematicae Graph Theory; 2002, 22, 1; 199-210
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Even [a,b]-factors in graphs
Autorzy:
Kouider, Mekkia
Vestergaard, Preben
Powiązania:
https://bibliotekanauki.pl/articles/744553.pdf
Data publikacji:
2004
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
even factor
eulerian
spanning subgraph
Opis:
Let a and b be integers 4 ≤ a ≤ b. We give simple, sufficient conditions for graphs to contain an even [a,b]-factor. The conditions are on the order and on the minimum degree, or on the edge-connectivity of the graph.
Źródło:
Discussiones Mathematicae Graph Theory; 2004, 24, 3; 431-441
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies