- Tytuł:
- Neural network models for combinatorial optimization : a survey of deterministic, stochastic and chaotic approaches
- Autorzy:
-
Smith, K.
Potvin, J.
Kwok, T. - Powiązania:
- https://bibliotekanauki.pl/articles/205943.pdf
- Data publikacji:
- 2002
- Wydawca:
- Polska Akademia Nauk. Instytut Badań Systemowych PAN
- Tematy:
-
chaos
odwzorowanie samoporządkujące
optymalizacja kombinatoryczna
sieć Hopfielda
sieć neuronowa
combinatorial optimization
deformable templates
Hopfield networks
neural networks
self-organizing maps - Opis:
- This paper serves as a tutorial on the use of neural networks for solving combinatorial optimization problems. It reviews the two main classes of neural network models : the gradient-based neural networks such as the Hopfield network, and the deformable template approaches such as the elastic net method and self organizing maps. In each class, the original model is presented, its limitations discussed, and subsequent developments and extensions are reviewed. Particular emphasis is placed on stochastic and chaotic variations on the neural network models designed to improve the optimization performance. Finally, the performance of these neural network models is compared and discussed relative to other heuristic approaches.
- Źródło:
-
Control and Cybernetics; 2002, 31, 2; 183-216
0324-8569 - Pojawia się w:
- Control and Cybernetics
- Dostawca treści:
- Biblioteka Nauki