Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lotfi, A." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
In vitro shoot proliferation of Passiflora caerulea L. via cotyledonary node and shoot tip explants
Autorzy:
Jafari, M.
Daneshvar, M.H.
Lotfi, A.
Powiązania:
https://bibliotekanauki.pl/articles/80666.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Passiflora caerulea
shoot proliferation
in vitro
acclimatization
plant growth regulator
regeneration
rooting
shoot explant
shoot multiplication
indole butyric acid
thidiazuron
cytokinin
Źródło:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology; 2017, 98, 2
0860-7796
Pojawia się w:
BioTechnologia. Journal of Biotechnology Computational Biology and Bionanotechnology
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Fatigue behavior of hot mix asphalt modified with nano AL2O3 – an experimental study
Autorzy:
Lotfi-Eghlim, A.
Karimi, M. S.
Powiązania:
https://bibliotekanauki.pl/articles/102975.pdf
Data publikacji:
2016
Wydawca:
Stowarzyszenie Inżynierów i Techników Mechaników Polskich
Tematy:
asphalt mixture
nano-Al2O3
fatigue life
final strains
Opis:
Nanotechnology is one of the most important research areas and is presented in the vast fields of knowledge such as road construction industry has been surrounded. This paper has focused on the potential benefits of nano particles for modification of asphalt mixtures. Nano Al2O3 due to its unique properties can improve the dynamic characteristics of hot mix asphalt. Fatigue life of asphaltic samples is determined with indirect tensile fatigue tests by using of UTM. The results show that fatigue life of modified asphalt mixtures in compare with conventional mix is significantly increased. Beside, based on experimental results and numerical analyses, a new model is presented for prediction the fatigue behavior of asphalt mixtures modified with nano Al2O3. This model can completely characterized the fatigue performance of modified asphalt under dynamic loading conditions and different temperatures.
Źródło:
Advances in Science and Technology. Research Journal; 2016, 10, 31; 58-63
2299-8624
Pojawia się w:
Advances in Science and Technology. Research Journal
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of daily average downward shortwave radiation from MODIS data using principal components regression method: Fars province case study
Autorzy:
Barzin, R.
Shirvani, A.
Lotfi, H.
Powiązania:
https://bibliotekanauki.pl/articles/25406.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Instytut Agrofizyki PAN
Opis:
Downward shortwave radiation is a key quantity in the land-atmosphere interaction. Since the moderate resolution imaging spectroradiometer data has a coarse temporal resolution, which is not suitable for estimating daily average radiation, many efforts have been undertaken to estimate instantaneous solar radiation using moderate resolution imaging spectroradiometer data. In this study, the principal components analysis technique was applied to capture the information of moderate resolution imaging spectroradiometer bands, extraterrestrial radiation, aerosol optical depth, and atmospheric water vapour. A regression model based on the principal components was used to estimate daily average shortwave radiation for ten synoptic stations in the Fars province, Iran, for the period 2009-2012. The Durbin-Watson statistic and autocorrelation function of the residuals of the fitted principal components regression model indicated that the residuals were serially independent. The results indicated that the fitted principal components regression models accounted for about 86-96% of total variance of the observed shortwave radiation values and the root mean square error was about 0.9-2.04 MJ m-2 d-1. Also, the results indicated that the model accuracy decreased as the aerosol optical depth increased and extraterrestrial radiation was the most important predictor variable among all.
Źródło:
International Agrophysics; 2017, 31, 1
0236-8722
Pojawia się w:
International Agrophysics
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies