Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Lahiri, Partha" wg kryterium: Autor


Wyświetlanie 1-5 z 5
Tytuł:
Discussion of “Probability vs. Nonprobability Sampling: From the Birth of Survey Sampling to the Present Day” by Graham Kalton
Autorzy:
Gershunskaya, Julie
Lahiri, Partha
Powiązania:
https://bibliotekanauki.pl/articles/18105111.pdf
Data publikacji:
2023-06-13
Wydawca:
Główny Urząd Statystyczny
Opis:
-
Źródło:
Statistics in Transition new series; 2023, 24, 3; 31-37
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Estimation of mask effectiveness perception for small domains using multiple data sources
Autorzy:
Sen, Aditi
Lahiri, Partha
Powiązania:
https://bibliotekanauki.pl/articles/2028543.pdf
Data publikacji:
2022-03-15
Wydawca:
Główny Urząd Statystyczny
Tematy:
cross-validation
jackknife
survey data
synthetic estimation
Opis:
Understanding the impacts of pandemics on public health and related societal issues at granular levels is of great interest. COVID-19 is affecting everyone in the globe and mask wearing is one of the few precautions against it. To quantify people's perception of mask effectiveness and to prevent the spread of COVID-19 for small areas, we use Understanding America Study's (UAS) survey data on COVID-19 as our primary data source. Our data analysis shows that direct survey-weighted estimates for small areas could be highly unreliable. In this paper, we develop a synthetic estimation method to estimate proportions of perceived mask effectiveness for small areas using a logistic model that combines information from multiple data sources. We select our working model using an extensive data analysis facilitated by a new variable selection criterion for survey data and benchmarking ratios. We suggest a jackknife method to estimate the variance of our estimator. From our data analysis, it is evident that our proposed synthetic method outperforms the direct survey-weighted estimator with respect to commonly used evaluation measures.
Źródło:
Statistics in Transition new series; 2022, 23, 1; 1-20
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Spatial Prediction in Small Area Estimation
Autorzy:
Vogt, Martin
Lahiri, Partha
Münnich, Ralf
Powiązania:
https://bibliotekanauki.pl/articles/18105151.pdf
Data publikacji:
2023-06-13
Wydawca:
Główny Urząd Statystyczny
Tematy:
Fay-Herriot
CAR
poverty estimation
spatial models
Opis:
Small area estimation methods have become a widely used tool to provide accurate estimates for regional indicators such as poverty measures. Recent research has provided evidence that spatial modelling still can improve the precision of regional and local estimates. In this paper, we provide an intrinsic spatial autocorrelation model and prove the propriety of the posterior under a flat p rior. F urther, we show using the SAIPE poverty data that the gain in efficiency using a spatial model can be essentially important in the presence of a lack of strong auxiliary variables.
Źródło:
Statistics in Transition new series; 2023, 24, 3; 77-94
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Triple-goal Estimation of Unemployment Rates for U.S. States Using the U.S. Current Population Survey Data
Autorzy:
Bonnéry, Daniel
Cheng, Yang
Ha, Neung Soo
Lahiri, Partha
Powiązania:
https://bibliotekanauki.pl/articles/465991.pdf
Data publikacji:
2015
Wydawca:
Główny Urząd Statystyczny
Tematy:
complex survey data
empirical distribution function
Monte Carlo Markov Chain
rank
risk
small area estimation
Opis:
In this paper, we first develop a triple-goal small area estimation methodology for simultaneous estimation of unemployment rates for U.S. states using the Current Population Survey (CPS) data and a two-level random sampling variance normal model. The main goal of this paper is to illustrate the utility of the triple-goal methodology in generating a single series of unemployment rate estimates for three separate purposes: developing estimates for individual small area means, producing empirical distribution function (EDF) of true small area means, and the ranking of the small areas by true small area means. We achieve our goal using a Monte Carlo simulation experiment and a real data analysis.
Źródło:
Statistics in Transition new series; 2015, 16, 4; 511-522
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Dengue virus (NS2B/NS3 protease) protein engineering. Part I: An automated design for hotspots stability and site-specific mutations by using HotSpot Wizard 3.0 tool
Autorzy:
Lahiri, Madhumita
Ghosh, Ipsita
Talukdar, Partha
Talapatra, Soumendra Nath
Powiązania:
https://bibliotekanauki.pl/articles/1062840.pdf
Data publikacji:
2019
Wydawca:
Przedsiębiorstwo Wydawnictw Naukowych Darwin / Scientific Publishing House DARWIN
Tematy:
HotSpot Wizard
NS2B/NS3 protease
Non-structural protein
computational tool
protein engineering
Opis:
The non-structural dengue virus (DNV) protein, DNV-2 NS2B/NS3 protease is a combination of two proteins as 2B and 3 and these two proteins in complex replicate faster during dengue fever. The objective of the present study was to detect hot spots and design of smart libraries for engineering protein stability, substrate specificity, tunnels and cavities as well as suitable mutability position of studied protein by using an online tool, HotSpot Wizard (version 3.0). The prediction results were obtained in output interface for functional hot spots, stability hot spots (structural flexibility), correlated hot spots and stability hot spots (sequence consensus) from the sequence string. It is concluded that the prediction of pocket and mutability of this protein can easily be identified the structural alternation especially in disease diagnosis and space for ligand binding site in pocket for the potential of new drug design. Moreover, this computational prediction is suggested to compare with experimental hotspots for studied protein in relation to therapeutic efficacies, which are lacking to prevent viral infection.
Źródło:
World Scientific News; 2019, 127, 3; 177-190
2392-2192
Pojawia się w:
World Scientific News
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-5 z 5

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies