Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Khaledi, N." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
Biocontrol mechanisms of Trichoderma harzianum against soybean charcoal rot caused by Macrophomina phaseolina
Autorzy:
Khaledi, N.
Taheri, P.
Powiązania:
https://bibliotekanauki.pl/articles/65311.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
biological control
Trichoderma harzianum
soybean
charcoal rot disease
soil-borne disease
stem disease
root disease
Macrophomina phaseolina
peroxidase
phenol
total phenol
Opis:
Throughout the world, charcoal rot, caused by Macrophomina phaseolina, is one of the most destructive and widespread diseases of crop plants such as soybean. In this study, the biological control capability of 11 Trichoderma spp. isolates against M. phaseolina was investigated using screening tests. Among all the tested Trichoderma spp. isolates, inhibition varied from 20.22 to 58.67% in dual culture tests. Dual culture, volatile and non-volatile tests revealed that two isolates of Trichoderma harzianum (including the isolates T7 and T14) best inhibited the growth of M. phaseolina in vitro. Therefore, these isolates were selected for biocontrol of M. phaseolina in vivo. The results of greenhouse experiments revealed that disease severity in the seed treatment with T. harzianum isolates was significantly lower than that of the soil treatment. In most of the cases, though, soil treatment with T. harzianum resulted in higher plant growth parameters, such as root and shoot weight. The effects of T. harzianum isolates on the activity of peroxidase enzyme and phenolic contents of the soybean root in the presence and absence of M. phaseolina were determined in greenhouse conditions. Our results suggested that a part of the inhibitory effect of T. harzianum isolates on soybean charcoal rot might be related to the indirect influence on M. phaseolina. Plant defense responses were activated as an elicitor in addition to the direct effect on the pathogen growth.
Źródło:
Journal of Plant Protection Research; 2016, 56, 1
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Antifungal activity of Bunium persicum essential oil and its constituents on growth and pathogenesis of Colletotrichum lindemuthianum
Autorzy:
Khaledi, N.
Hassani, F.
Powiązania:
https://bibliotekanauki.pl/articles/66144.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
plant disease
anthracnose
common bean
Phaseolus vulgaris
seed-borne disease
antifungal activity
Bunium persicum
essential oil
plant growth
pathogenesis
Colletotrichum lindemuthianum
fungi
fungal disease
pathogen
Opis:
Anthracnose disease caused by Colletotrichum lindemuthianum (Sacc. and Magnus) Lams- -Scrib is one of the most devastating seed-borne diseases of common bean (Phaseolus vulgaris L.). In the present study, we evaluated the antifungal activity of Bunium persicum essential oil (EO) and its main constituents on mycelial growth, sporulation and spore germination inhibition of C. lindemuthianum. The main objective of this study was to investigate the effect of EO and its main constituents on decreasing the activity of cell wall degrading enzymes (CWDEs) produced by C. lindemuthianum, which are associated with disease progress. Also, the effects of seed treatment and foliar application of EO and its main constituent, cuminaldehyde, on anthracnose disease severity was investigated. The essential oil of B. persicum, was obtained by using a clevenger apparatus and its major constituents were identified by gas chromatography-mass spectrometry (GC-MS). The EO was characterized by the presence of major compounds such as cuminaldehyde (37.7%), γ-terpinene (17.1%) and β-pinene (15.4%), which indicated antifungal effects against C. lindemuthianum. This pathogen did not grow in the presence of EO, cuminaldehyde and γ-terpinene, β-pinene at 1,500; 1,010 and 1,835 ppm concentrations, respectively. Also, sporulation and spore germination of C. lindemuthianum was completely inhibited by EO and cuminaldehyde. Synergistic effects of the main constituents showed that combing γ-terpinene with cuminaldehyde induced a synergistic activity against C. lindemuthianum and in combination with β-pinene caused an additive effect. Activities of pectinase, cellulase and xylanase, as main CWDEs, were decreased by EO and its main constituents at low concentration without affecting mycelial growth. Seed treatment and foliar application of peppermint EO and/or cuminaldehyde significantly reduced the development of bean anthracnose. We introduced B. persicum EO and constituents, cuminaldehyde and γ-terpinene, as possible control agents for bean anthracnose.
Źródło:
Journal of Plant Protection Research; 2018, 58, 4
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of germination and vigor indices associated with Fusarium-infected seeds in pre-basic seeds wheat fields
Autorzy:
Hassani, F.
Zare, L.
Khaledi, N.
Powiązania:
https://bibliotekanauki.pl/articles/65500.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Opis:
Seed-borne diseases of wheat such as Fusarium head blight (FHB), a fungal disease caused by several species of Fusarium, results in reduced yield and seed quality. The aim of this study was to identify the Fusarium species, the effect of Fusarium-infected seeds on germination and vigor indices and to determine the location of Fusarium spp. in seeds, as well as to investigate the pathogenicity and variability of aggressiveness of the isolates obtained from pre-basic seeds wheat fields in Iran. According to morphological and molecular characters, the species F. graminearum, F. culmorum, F. avenaceum and F. poae were identified. Among the isolates, F. graminearum was the predominant species with the highest frequency and relative density of 92.9% and 70.9%, respectively. We observed that germination and vigor indices were decreased due to increased Fusarium-infected seeds. Results indicated significant differences among cultivars and seed-borne Fusarium levels. While a higher infection level of Fusarium spp. most commonly occurred in the seed coat, only F. graminearum was observed in embryos. Our study about pathogenicity showed that 77.3% of the Fusarium spp. isolates were not pathogenic and 22.7% isolates of Fusarium spp. were pathogenic or weakly pathogenic. Our results indicated that variability in aggressiveness among isolates of a species and positive correlation may be determined by pathogenicity tests. This is the first time the location of Fusarium spp. in seeds has been identified. It is also the first time that Fusarium-infected seeds in pre-basic seeds wheat fields of Iran have been evaluated.
Źródło:
Journal of Plant Protection Research; 2019, 59, 1
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Evaluation of resistance and the role of some defense responses in wheat cultivars to Fusarium head blight
Autorzy:
Khaledi, N.
Taheri, P.
Falahati-Rastegar, M.
Powiązania:
https://bibliotekanauki.pl/articles/66757.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
resistance
defense response
wheat
Triticum aestivum
plant cultivar
Fusarium head blight
Fusarium culmorum
Fusarium graminearum
plant disease
Opis:
Fusarium graminearum and F. culmorum are the causal agents of Fusarium head blight (FHB) in cereal crops worldwide. Application of resistant cultivars is the most effective and economic method for management of FHB and reducing mycotoxin production in wheat. Understanding the physiological and biochemical mechanisms involved in basal resistance of wheat to FHB disease is limited. In this research, after screening resistance levels of eighteen wheat cultivars planted in Iran, Gaskozhen and Falat were identified as partially resistant and susceptible wheat cultivars against Fusarium spp., respectively. Also, we investigated the role of hydroxyl radical (OH−), nitric oxide (NO), callose deposition, lipid peroxidation and protein content in basal resistance of wheat to the hemi-biotrophic and necrotrophic Fusarium species causing FHB. Nitric oxide as a signaling molecule may be involved in physiological and defensive processes in plants. Our results showed that NO generation increased in seedlings and spikes of wheat cultivars after inoculation with Fusarium species. We observed earlier and stronger callose deposition at early time points after infection by Fusarium spp. isolates than in non-infected plants, which was positively related to the resistance levels in wheat cultivars. Higher levels of OH− and malondialdehyde (MDA) accumulation (as a marker of lipid peroxidation) were observed in the Falat than in the Gaskozhen cultivar, under non-infected and infected conditions. So, estimation of lipid peroxidation could be useful to evaluate cultivars’ susceptibility. These findings can provide novel insights for better recognition of physiological and biochemical markers of FHB resistance, which could be used for rapid screening of resistance levels in wheat cultivars against this destructive fungal disease.
Źródło:
Journal of Plant Protection Research; 2017, 57, 4
1427-4345
Pojawia się w:
Journal of Plant Protection Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies