Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Grover, Gurprit" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Extracting relevant predictors of the severity of mental illnesses from clinical information using regularisation regression models
Autorzy:
Kaushik, Sakshi
Sabharwal, Alka
Grover, Gurprit
Powiązania:
https://bibliotekanauki.pl/articles/2107145.pdf
Data publikacji:
2022-06-14
Wydawca:
Główny Urząd Statystyczny
Tematy:
adaptive LASSO
group LASSO
mental disorder
multicollinearity
random forest imputation
ridge regression
severity of an illness
Opis:
Mental disorders are common non-communicable diseases whose occurrence rises at epidemic rates globally. The determination of the severity of a mental illness has important clinical implications and it serves as a prognostic factor for effective intervention planning and management. This paper aims to identify the relevant predictors of the severity of mental illnesses (measured by psychiatric rating scales) from a wide range of clinical variables consisting of information on both laboratory test results and psychiatric factors . The laboratory test results collectively indicate the measurements of 23 components derived from vital signs and blood tests results for the evaluation of the complete blood count. The 8 psychiatric factors known to affect the severity of mental illnesses are considered, viz. the family history, course and onset of an illness, etc. Retrospective data of 78 patients diagnosed with mental and behavioural disorders were collected from the Lady Hardinge Medical College & Smt. S.K, Hospital in New Delhi, India. The observations missing in the data are imputed using the non-parametric random forest algorithm. The multicollinearity is detected based on the variance inflation factor. Owing to the presence of multicollinearity, regularisation techniques such as ridge regression and extensions of the least absolute shrinkage and selection operator (LASSO), viz. adaptive and group LASSO are used for fitting the regression model. Optimal tuning parameter λ is obtained through 13-fold cross-validation. It was observed that the coefficients of the quantitative predictors extracted by the adaptive LASSO and the group of predictors extracted by the group LASSO were comparable to the coefficients obtained through ridge regression.
Źródło:
Statistics in Transition new series; 2022, 23, 2; 129-152
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Multi-State Markov Model: An Application to Liver Cirrhosis
Autorzy:
Grover, Gurprit
Sreenivas, V.
Khanna, Sudeep
Seth, Divya
Powiązania:
https://bibliotekanauki.pl/articles/465641.pdf
Data publikacji:
2014
Wydawca:
Główny Urząd Statystyczny
Tematy:
illness-death model
maximum likelihood
Cirrhosis
Hepatocellular Carcinoma (HCC)
Opis:
The control and treatment of chronic diseases is a major public health challenge, particularly for patients suffering from liver disease. In this paper, we propose a frame to estimate survival and death probabilities of the patients suffering from liver cirrhosis and HCC in the presence of competing risks. Database of the admitted patients in a hospital in Delhi has been used for the study. A stochastic illness-death model has been developed describing two liver illness states (Cirrhosis and HCC) and two death states (death due to liver disease and death due to competing risk). Individuals in the study were observed for one year of life at any age xi. The survival and death probabilities of the individuals suffering from liver cirrhosis and HCC have been estimated using the method of maximum likelihood. The probability of staying in the cirrhotic state is estimated to be threefold higher than that of developing HCC (0.64/0.21) in one year of life. The probability of cirrhotic patient moving to HCC state is twice (0.21/0.11) the probability of dying due to liver disease. HCC being the severe stage, the probability of patient dying due to HCC is three times that of cirrhosis. Markov model proves to be a useful tool for analysis of chronic degenerative disease like liver cirrhosis. It can provide in-depth insight for both the researchers and policy makers to resolve complex problems related to liver cirrhosis with irreversible transitions.
Źródło:
Statistics in Transition new series; 2014, 15, 3; 429-442
1234-7655
Pojawia się w:
Statistics in Transition new series
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies