Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Bouchou, A." wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
Criticality indices of 2-rainbow domination of paths and cycles
Autorzy:
Bouchou, A.
Blidia, M.
Powiązania:
https://bibliotekanauki.pl/articles/255150.pdf
Data publikacji:
2016
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
2-rainbow domination number
criticality index
Opis:
A 2-rainbow dominating function of a graph G (V(G), E(G)) is a function ƒ that assigns to each vertex a set of colors chosen from the set {1,2} so that for each vertex with ƒ (v) = ∅ we have [formula].The weight of a 2RDF ƒ is defined as [formula] minimum weight of a 2RDF is called the 2-rainbow domination number of G, denoted by [formula].The vertex criticality index of a 2-rainbow domination of a graph G is defined as [formula] the edge removal criticality index of a 2-rainbow domination of a graph G is defined as [formula] and the edge addition of a 2-rainbow domination criticality index of G is defined as [formula] where G is the complement graph of G. In this paper, we determine the criticality indices of paths and cycles.
Źródło:
Opuscula Mathematica; 2016, 36, 5; 563-574
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A note on k-Roman graphs
Autorzy:
Bouchou, A.
Blidia, M.
Chellali, M.
Powiązania:
https://bibliotekanauki.pl/articles/255821.pdf
Data publikacji:
2013
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Roman k-domination
k-Roman graph
Opis:
Let G = (V,E) be a graph and let k be a positive integer. A subset D of V (G) is a k-dominating set of G if every vertex in V (G) \D has at least k neighbours in D. The k-domination number Υk(G) is the minimum cardinality of a k-dominating set of G. A Roman k-dominating function on G is a function f : V (G) →{0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-dominating function is the value [formula] and the minimum weight of a Roman k-dominating function on G is called the Roman k-domination number Υk(G) of G. A graph G is said to be a k-Roman graph if ΥkR(G) = 2Υk(G) . In this note we study k-Roman graphs.
Źródło:
Opuscula Mathematica; 2013, 33, 4; 641-646
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies