Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "neural networks radial" wg kryterium: Wszystkie pola


Tytuł:
Potencjał rynkowy remontów energooszczędnych w budownictwie mieszkaniowym Zielonej Góry
Market potential for energy efficient renovations in housing of Zielona Góra
Autorzy:
Skiba, M.
Mrówczyńska, M.
Bazan-Krzywoszańska, A.
Powiązania:
https://bibliotekanauki.pl/articles/402791.pdf
Data publikacji:
2016
Wydawca:
Politechnika Białostocka. Oficyna Wydawnicza Politechniki Białostockiej
Tematy:
miejska polityka energetyczna
polityka przestrzenna
wzrost efektywności energetycznej w budownictwie mieszkaniowym
sieci neuronowe radialne
municipal energy policy
spatial policy
increase energy efficiency in housing
neural networks radial
Opis:
W artykule przedstawiono analizę potencjalnych oszczędności energii dla remontów energooszczędnych w budownictwie mieszkaniowym w Zielonej Górze. Potencjał został określony na podstawie technologii i roku wykonania budynków, formy zabudowy i przeważającego sposobu zasilania w ciepło i energię elektryczną. Obliczony potencjał został przedstawiony jako wartość koniecznych nakładów dla zmniejszenia zużycia energii o 1 kWh/m2.
The paper presents an analysis of conditional energy savings for energy-efficient renovation of housing in Zielona Góra. The potential was determined on the basis of technology and a year of the construction of buildings, kind of buildings and dominating way of heat and power supply. The calculated potential was presented as the value of the necessary investments to reduce energy consumption by 1 kWh/m2.
Źródło:
Budownictwo i Inżynieria Środowiska; 2016, 7, 2; 111-117
2081-3279
Pojawia się w:
Budownictwo i Inżynieria Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Sztuczne sieci neuronowe o radialnych funkcjach bazowych do śledzenia obiektów w obrazach wideo
Artificial neural networks with radial basis functions for video object tracking
Autorzy:
Szymonik, J.
Powiązania:
https://bibliotekanauki.pl/articles/305873.pdf
Data publikacji:
2013
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
śledzenie obiektów
sztuczne sieci neuronowe
radialne funkcje bazowe
object tracking
artificial neural networks
radial basis functions
Opis:
W pracy przedstawiono opis sztucznej sieci neuronowej do lokalizacji i śledzenia obiektu w obrazach wideo z wykorzystaniem środowiska MATLAB oraz wyniki badań odporności algorytmu na mogące wystąpić zakłócenia. W artykule zaprezentowana została architektura sztucznej sieci neuronowej o radialnych funkcjach bazowych. Pokazany został zarówno algorytm śledzenia celu z wykorzystaniem powyższej architektury sieci, jak i metoda modelowania oraz lokalizacji celu. W podsumowaniu przedstawione zostały wyniki przeprowadzonych symulacji algorytmów śledzących opartych na sztucznych sieciach neuronowych.
The main problem considered in this article was the artificial neural network design for target localization and target tracking in video sequence, with the use of Matlab environment. What is more, the algorithm resistance to noise and disturbances that may occur was studied. The article presents the architecture of artificial neural network with radial basis functions. The algorithm for tracking as well as the method for target modeling and localization with the use of the above network architecture is shown. In the summary there are results of conducted simulations in Matlab of video trackers based on artificial neural networks.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2013, 11; 33-39
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Wykorzystanie algorytmów genetycznych oraz analizy PCA do doboru wejść klasyfikatorów uszkodzeń kół zębatych opartych na sieciach neuronowych z radialnym jądrem
Application of genetic algorithm and principal component analysis for choosing inputs for classifiers of tooth gear faults which used neural networks with radial nucleus
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/196879.pdf
Data publikacji:
2014
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
diagnostyka
drgania
sieci neuronowe
przekładnie zębate
diagnostics
vibrations
neural networks
gearboxes
Opis:
W artykule przedstawiono wyniki eksperymentów mających na celu budowę klasyfikatora lokalnych uszkodzeń zębów kół przekładni opartego na sztucznych sieciach neuronowych. W badaniach wykorzystywano sieci neuronowe z radialnym jądrem. Dodatkowo podjęto próbę wykorzystania algorytmów genetycznych oraz analizy PCA w celu wyboru wejść klasyfikatora neuronowego. Badania oparto na sygnałach drganiowych otrzymanych z modelu dynamicznego przekładni pracującej w układzie napędowym. W artykule zaproponowano sposób budowy deskryptorów lokalnych uszkodzeń zębów kół, wykorzystując do tego celu sygnały drganiowe poddane odpowiedniej filtracji oraz selekcji widmowej.
The paper presents the results of an experimental application of neural network as a classifier of tooth gear faults. The neural classifiers were based on the artificial neural networks with radial nucleus. In the experiment genetic algorithm and principal component analysis were used to check influence of choosing inputs for neural classifier on diagnostic error. The model of gearbox was used in order to create a base of knowledge. The input data for the classifier was in a form of matrix composed of statistical measures, obtained from vibration signals after filtration and selection of spectrum range.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2014, 83; 51-57
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Budowa numerycznego modelu rzeźby terenu toru wodnego metodą opartą na przekrojach
The Construction of a Numerical Terrain Relief Model of a Fairway by the Cross-Sections Method
Autorzy:
Stateczny, A.
Kozak, M.
Powiązania:
https://bibliotekanauki.pl/articles/360648.pdf
Data publikacji:
2006
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
numeryczny model rzeźby terenu
radialne sieci neuronowe
modelowanie dna
EXPLO-SHIP 2006
Numerical Terrain Relief Model
radial neural networks
bottom modeling
Opis:
Artykuł przedstawia metodę budowy numerycznego modelu rzeźby terenu proponowaną dla torów wodnych. Metoda oparta jest na przekrojach aproksymowanych z wykorzystaniem sieci radialnych (RBF), z przyrostowym doborem liczby neuronów radialnych. Przekroje adaptacyjnie dopasowują się do modelowanej powierzchni oraz założonego przez użytkownika błędu, co zapewnia redukcję danych i możliwość wizualizacji powierzchni w czasie rzeczywistym. Do badań wykorzystano powierzchnie testowe oraz rzeczywiste punkty pomiarowe z toru wodnego Szczecin - Świnoujście.
A method of constructing a Numerical Terrain Relief Model dedicated to fairways is presented. The method is based on approximated cross-sections using RBF networks with an incremental selection of radial neurons number. Adaptive cross-sections adjust to the model surface and to an error assumed by the user, which reduces the amount of data and makes it possible to visualize the surface in real time. The research made use of test surfaces as well as real measurement points located in the Szczecin - Świnoujście fairway.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2006, 11 (83); 269-277
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Entropia dyskretnej transformaty falkowej i radialne sieci neuronowe jako narzędzia diagnostyki nieszczelności zaworu wylotowego w silniku ZS
Entropy of discrete wavelet transform and radial neural networks as a diagnosis tool of diesel engine exhaust valve fault
Autorzy:
Czech, P.
Powiązania:
https://bibliotekanauki.pl/articles/198343.pdf
Data publikacji:
2011
Wydawca:
Politechnika Śląska. Wydawnictwo Politechniki Śląskiej
Tematy:
transformata falkowa
sieć neuronowa
diagnostyka
zawór wydechowy
silnik z zapłonem samoczynnym
wavelet transform
neural network
diagnostics
exhaust valve
compression-ignition engine
Opis:
W przypadku diagnozowania silnika spalinowego metodami drganiowymi nie można zapominać o występowaniu wielu źródeł drgań, co jest przyczyna wzajemnego zakłócania symptomów uszkodzeń. Ze względu na konieczność analizy sygnałów niestacjonarnych i impulsowych w niniejszym artykule wykorzystano dyskretna transformatę falkową (DWT). Na podstawie sygnałów zdekomponowanych za jej pomocą wyznaczono wartość entropii, która stanowiła podstawę do budowy wzorców stanów pracy silnika, przeznaczonych do uczenia sieci neuronowych. Z przeprowadzonych badań wynika, że istnieje możliwość wykorzystania radialnych sztucznych sieci neuronowych do oceny nieszczelności zaworu wylotowego w silniku ZS.
In case of diagnosing combustion engines by vibration methods, the presence of numerous sources of vibration cannot be neglected, which are the reason for reciprocal interference of symptoms of fault. Owing to the necessity of analyzing non-stationary and impulse signals, a discrete wavelet transform (DWT) has been applied in this study. Based on the signals' decomposition performed by means of the transform, the value of entropy was determined, which served as a basis in the construction of the states of engine operation intended for teaching neural networks. As results from the research, there is a possibility of using radial neural networks to assess the diesel engine exhaust valve fault.
Źródło:
Zeszyty Naukowe. Transport / Politechnika Śląska; 2011, 73; 15-20
0209-3324
2450-1549
Pojawia się w:
Zeszyty Naukowe. Transport / Politechnika Śląska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparison of MLP and RBF Neural Networks in the Task of Classifying the Diameters of Water Pipes
Autorzy:
Gvishiani, Zurab
Dawidowicz, Jacek
Powiązania:
https://bibliotekanauki.pl/articles/2174907.pdf
Data publikacji:
2022
Wydawca:
Politechnika Koszalińska. Wydawnictwo Uczelniane
Tematy:
water distribution system
hydraulic calculation
selection of diameter
water pipe
artificial neural network
radial basis function
multilayer perceptron
Opis:
Hydraulic calculations of water distribution systems are currently performed using computer programs. In addition to the basic calculation procedure, modules responsible for evaluating the obtained calculation results are introduced more and more often into the programs. This article presents the results of research on artificial neural networks with a radial base function (RBF) and a multilayer perceptron (MLP), aimed at determining whether they can be used to model the relationship between the variables describing the computational section of the water distribution system and the diameter of the water pipe. The classification capabilities of the RBF and MLP networks were analyzed according to the number of neurons in the hidden layer of the network. A comparative analysis of RBF networks with multilayer perceptron (MLP) networks was performed. The results showed that the MLP networks have much better classification properties and are better suited for the task of assessing the selected diameters of the water pipes.
Źródło:
Rocznik Ochrona Środowiska; 2022, 24; 505--519
1506-218X
Pojawia się w:
Rocznik Ochrona Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Comparative Application of Radial Basis Function and Multilayer Perceptron Neural Networks to Predict Traffic Noise Pollution in Tehran Roads
Autorzy:
Mansourkhaki, A.
Berangi, M.
Haghiri, M.
Powiązania:
https://bibliotekanauki.pl/articles/124655.pdf
Data publikacji:
2018
Wydawca:
Polskie Towarzystwo Inżynierii Ekologicznej
Tematy:
MLP
RBF
neural network
noise prediction
road traffic noise
Opis:
Noise pollution is a level of environmental noise which is considered as a disturbing and annoying phenomenon for human and wildlife. It is one of the environmental problems which has not been considered as harmful as the air and water pollution. Compared with other pollutants, the attempts to control noise pollution have largely been unsuccessful due to the inadequate knowledge of its effects on humans, as well as the lack of clear standards in previous years. However, with an increase of traveling vehicles, the adverse impact of increasing noise pollution on human health is progressively emerging. Hence, investigators all around the world are seeking to find new approaches for predicting, estimating and controlling this problem and various models have been proposed. Recently, developing learning algorithms such as neural network has led to novel solutions for this challenge. These algorithms provide intelligent performance based on the situations and input data, enabling to obtain the best result for predicting noise level. In this study, two types of neural networks – multilayer perceptron and radial basis function – were developed for predicting equivalent continuous sound level (LAeq) by measuring the traffic volume, average speed and percentage of heavy vehicles in some roads in west and northwest of Tehran. Then, their prediction results were compared based on the coefficient of determination (R2) and the Mean Squared Error (MSE). Although both networks are of high accuracy in prediction of noise level, multilayer perceptron neural network based on selected criteria had a better performance.
Źródło:
Journal of Ecological Engineering; 2018, 19, 1; 113-121
2299-8993
Pojawia się w:
Journal of Ecological Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Lan interconnection unit based on an artificial neural network
Autorzy:
Jalab, Hamid A.
Powiązania:
https://bibliotekanauki.pl/articles/1955324.pdf
Data publikacji:
2006
Wydawca:
Politechnika Gdańska
Tematy:
LAN bridge
neural networks
radial basis function (RBF)
Opis:
This paper presents the design of an intelligent interconnection unit based on an artificial neural network (ANN), used when two local area networks (LAN) with different IEEE 802 standard protocols are connected. The proposed ANN is used to activate execution of suitable procedures bridging 802.X LAN and 802.Y LAN.
Źródło:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk; 2006, 10, 3; 339-346
1428-6394
Pojawia się w:
TASK Quarterly. Scientific Bulletin of Academic Computer Centre in Gdansk
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Vehicles Classification Using the HRBF Neural Network
Klasyfikacja pojazdów z wykorzystaniem sieci neuronowej HRBF
Autorzy:
Wantoch-Rekowski, R.
Powiązania:
https://bibliotekanauki.pl/articles/305921.pdf
Data publikacji:
2011
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
sieci neuronowe
klasyfikacja sieci
zbiór uczący
Hyper Radial Basis Function network HRBF
neural networks
networks classification
learning set
HRBF
Opis:
The paper presents the problem of using a neural network for military vehicle classification on the basis of ground vibration. One of the main elements of the system is a unit called the geophone. This unit allows to measure the amplitude of ground vibration in each direction for a certain period of time. The value of the amplitude is used to fix the characteristic frequencies of each vehicle. If we want to fix the main frequency it is necessary to use the Fourier transform. In this case the fast Fourier transform FFT was used. Since the neural network (Hyper Radial Basis Function network) was used, a learning set has to be prepared. Please find the attached results of using the HRBF neural network, which include: examples of learning, validation and test sets, the structure of the networks and the learning algorithm, learning and testing results.
W opracowaniu przedstawiono zagadnienie wykorzystania sieci neuronowej do klasyfikacji określonych typów pojazdów na podstawie analizy amplitudy drgań gruntu. Jednym z elementów systemu do pomiaru amplitudy drgań gruntu jest geofon. Umożliwia on pomiar amplitudy drgań gruntu w wybranym kierunku dla określonego przedziału czasu. Wartość wyznaczonej amplitudy wykorzystywana jest do wyznaczenia charakterystycznych częstotliwości drgań dla poszczególnych pojazdów. Do wyznaczenia charakterystycznych częstotliwości wykorzystywana jest transformata Fouriera FFT. Do klasyfikacji wykorzystana została sieć neuronowa z radialną funkcją aktywacji, dlatego też wymagane jest przygotowanie odpowiedniego zbioru uczącego. W opracowaniu przedstawiono wyniki użycia sieci HRBF. Przedstawiono strukturę oraz zawartość zbioru uczącego.
Źródło:
Biuletyn Instytutu Systemów Informatycznych; 2011, 7; 47-52
1508-4183
Pojawia się w:
Biuletyn Instytutu Systemów Informatycznych
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Prediction of industrial pollution by radial basis function networks
Autorzy:
Djebbri, N.
Rouainia, M.
Powiązania:
https://bibliotekanauki.pl/articles/207579.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
forecasting
RBF
artificial neural network
pollution
prognozowanie
sztuczna sieć neuronowa
zanieczyszczenie
Opis:
Atmospheric pollution has been receiving a significant interest for several decades since industries cause more and more pollution. Thanks to the development of many prediction techniques, scientists and industries are focusing more on pollution prediction. The aim of this work is to predict the two pollutant concentrations (NOx and CO) in industrial sites by a modified radial basis function (RBF) based neural network. The modification considered the spread parameter h of the activation function in the RBF network. In order to get the best network, the variations of this parameter for three cases were considered. In the first case, only pollutants concentrations variables were used, while in the second one, only the meteorological variables were utilized. In the third case, pollutants' concentrations were connected with meteorological variables. Based on calculation errors, the best model that ensures the best monitoring of pollutants concentration could be identified.
Źródło:
Environment Protection Engineering; 2018, 44, 3; 153-164
0324-8828
Pojawia się w:
Environment Protection Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Analysis of Radial Dependence of the Localized Magnetic Field using Artificial Neural Networks
Autorzy:
Isık, A.
Isık, N.
Powiązania:
https://bibliotekanauki.pl/articles/1030376.pdf
Data publikacji:
2017-01
Wydawca:
Polska Akademia Nauk. Instytut Fizyki PAN
Tematy:
42.79.Fm
07.05.Tp
07.77.-n
Opis:
The measurements of the angular distributions of charged particles have a long history in atomic and molecular collision studies. To detect all electrons originating from collision has great importance in experimental studies. Due to the physical constraints of the experimental instruments, electrons in definite angles can be detected. Magnetic angle changer is designed to steer electrons scattered at undetectable angles. The magnetic angle changer is a source of the localized magnetic field. A well-controlled magnetic field in the interaction region changes the angles of the electron trajectories. In this study, artificial neural networks have been performed to obtain variation of the magnetic field strength as a function of radial distance calculated from boundary element method. A stringent quality filter is used for data to produce more robust artificial neural network based prediction. The results indicate that the well-trained artificial neural networks can predict the effect on the radial dependence of the localized magnetic field with tremendous precision. It is believed that this study will introduce a new insight into collision studies.
Źródło:
Acta Physica Polonica A; 2017, 131, 1; 32-33
0587-4246
1898-794X
Pojawia się w:
Acta Physica Polonica A
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks
Autorzy:
Ahmida, Z.
Charef, A.
Becerra, V. M.
Powiązania:
https://bibliotekanauki.pl/articles/908523.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
system nieliniowy
sterowanie optymalne
radialna funkcja bazowa
sieć neuronowa
regulacja predykcyjna
sterowanie wyprzedzające
nonlinear systems
optimal control
radial basis functions
neural networks
predictive control
feedforward control
Opis:
A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed online by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear predictive control strategy with guaranteed stability. The feedforward neuro-controller has been designed using the concept of inverse mapping. The proposed control scheme is demonstrated on a simulated single-link robotic manipulator.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2005, 15, 3; 369-381
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Speech nonfluency detection and classification based on linear prediction coefficients and neural networks
Autorzy:
Kobus, A.
Kuniszyk-Jóźkowiak, W.
Smołka, E.
Codello, I.
Powiązania:
https://bibliotekanauki.pl/articles/333600.pdf
Data publikacji:
2010
Wydawca:
Uniwersytet Śląski. Wydział Informatyki i Nauki o Materiałach. Instytut Informatyki. Zakład Systemów Komputerowych
Tematy:
przewidywanie liniowe
liniowe kodowanie predykcyjne
sieci nuronowe
kowariancja
brak płynności
mowa
wykrywanie
perceptron
linear prediction
LPC
neural networks
Kohonen
covariance
nonfluency
speech
detection
radial
Opis:
The goal of the paper is to present a speech nonfluency detection method based on linear prediction coefficients obtained by using the covariance method. The application “Dabar” was created for research. It implements three different methods of LP with the ability to send coefficients computed by them into the input of Kohonen networks. Neural networks were used to classify utterances in categories of fluent and nonfluent. The first one was Kohonen network (SOM), used to reduce LP coefficients representation of each window, which were used as input data to SOM input layer, to a vector of winning neurons of SOM output layer. Radial Basis Function (RBF) networks, linear networks and Multi-Layer Perceptrons were used as classifiers. The research was based on 55 fluent samples and 54 samples with blockades on plosives (p, b, d, t, k, g). The examination was finished with the outcome of 76% classifying.
Źródło:
Journal of Medical Informatics & Technologies; 2010, 15; 135-143
1642-6037
Pojawia się w:
Journal of Medical Informatics & Technologies
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Face Recognition Using Canonical Correlation, Discrimination Power, and Fractional Multiple Exemplar Discriminant Analyses
Autorzy:
Hajiarbabi, M.
Agah, A.
Powiązania:
https://bibliotekanauki.pl/articles/384779.pdf
Data publikacji:
2015
Wydawca:
Sieć Badawcza Łukasiewicz - Przemysłowy Instytut Automatyki i Pomiarów
Tematy:
face recognition
Canonical Correlation Analysis
Discrimination Power Analysis
Multiple Exemplar Discriminant Analysis
Radial Basis Function neural
networks
Opis:
Face recognition is a biometric identification method which compared to other methods, such as finger print identification, speech, signature, hand written and iris recognition is shown to be more noteworthy both theoretically and practically. Biometric identification methods have various applications such as in film processing, control access networks, among many. The automatic recognition of a human face has become an important problem in pattern recognition, due to (1) the structural similarity of human faces, and (2) great impact of factors such as illumination conditions, facial expression and face orientation. These have made face recognition one of the most challenging problems in pattern recognition. Appearance-based methods are one of the most common methods in face recognition, which can be categorized into linear and nonlinear methods. In this paper face recognition using Canonical Correlation Analysis is introduced, along with the review of the linear and nonlinear appearance-based methods. Canonical Correla- tion Analysis finds the linear combinations between two sets of variables which have maximum correlation with one another. Discriminant Power analysis and Fractional Multiple Discriminant Analysis has been used to extract features from the image. The results provided in this paper show the advantage of this method compared to other methods in this field.
Źródło:
Journal of Automation Mobile Robotics and Intelligent Systems; 2015, 9, 4; 18-27
1897-8649
2080-2145
Pojawia się w:
Journal of Automation Mobile Robotics and Intelligent Systems
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Support vector machines and neural networks for forecasting of failure rate of water pipes
Metoda wektorów nośnych i sieci neuronowe do przewidywania wskaźnika awaryjności przewodów wodociągowych
Autorzy:
Kutyłowska, M.
Powiązania:
https://bibliotekanauki.pl/articles/126281.pdf
Data publikacji:
2016
Wydawca:
Towarzystwo Chemii i Inżynierii Ekologicznej
Tematy:
pipelines
prediction
radial basis functions
rurociągi
przewidywanie
radialne funkcje bazowe
Opis:
The failure rate of water pipes was predicted using support vector machines (SVMs) and artificial neural networks (ANNs). Both algorithms are regression methods of so called machine learning. Operational data from the time span 2001-2012 were used for forecasting purposes. The length, diameter and year of construction of the distribution pipes and the house connections were treated as the independent variables. The computations were carried out using the Statistica 12.0 software.
Wskaźnik awaryjności przewodów wodociągowych przewidywano za pomocą metody wektorów nośnych (SVM) i sztucznych sieci neuronowych (SSN). Oba algorytmy należą do metod regresyjnych, nazywanych metodami uczenia maszyn. Dane eksploatacyjne z lat 2001-2012 zostały wykorzystane w celach predykcji. Długość, średnica i rok budowy przewodów rozdzielczych i przyłączy były zmiennymi niezależnymi. Obliczenia przeprowadzono w programie Statistica 12.0.
Źródło:
Proceedings of ECOpole; 2016, 10, 1; 41-46
1898-617X
2084-4557
Pojawia się w:
Proceedings of ECOpole
Dostawca treści:
Biblioteka Nauki
Artykuł

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies