Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "specyficzna identyfikacja emiterów" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Specyficzna identyfikacja emiterów radarowych bazująca na analizie składowych głównych
Specific radar emitter identification based on principal component analysis
Autorzy:
Kawalec, A.
Owczarek, R.
Rapacki, T.
Wnuczek, S.
Powiązania:
https://bibliotekanauki.pl/articles/210693.pdf
Data publikacji:
2006
Wydawca:
Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego
Tematy:
walka elektroniczna
klasyfikacja cech sygnałów radarowych
specyficzna identyfikacja emiterów
przekształcenie Karhunena-Loeve'a
warfare electronic
radar signal feature classification
specific emitter identification
Karhunen-Loeve expansion
Opis:
W artykule została przedstawiona problematyka związana z identyfikacją emiterów radarowych należących do tego samego typu i klasy. Jest to specyficzny rodzaj identyfikacji (SEI, ang. Specific Emitter Identification), polegający na rozróżnianiu poszczególnych egzemplarzy tego samego typu radaru. Klasyczna identyfikacja sygnałów bazująca na analizie statystycznej podstawowych parametrów mierzalnych sygnału nie spełnia wymagań stawianych przed SEI. Przedstawiona w artykule metoda identyfikacji opiera się na przekształceniu Karhunena-Loeve'a (KL), która należy do metod analizy składowych głównych (PCA, ang. Principal Component Analysis).
One of the most difficult tasks in the radar signal processing is optimal features extraction and classification. The multifunction radar systems cannot be classified and precisely recognized by most of new and modern Electronic Support Measure and Electronic Intelligence Devices in the real time. In most cases, the modern ESM/ELINT systems cannot recognize the different devices of the same type or class. New method of the radar identification with a high quality of recognizing is the Specific Emitter Identification (SEI). The main task is to find non-intentional modulations in the receiving signals. This paper provides an overview of the new methods of measurement emitter signal features parameters and their transformation. This paper presents some aspects of radar signal features processing using Karhunen-Loeve's expansion as a feature selection and classification transform.
Źródło:
Biuletyn Wojskowej Akademii Technicznej; 2006, 55, 1; 41-54
1234-5865
Pojawia się w:
Biuletyn Wojskowej Akademii Technicznej
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Specific emitter identification based on one-dimensional complex-valued residual networks with an attention mechanism
Autorzy:
Qu, Lingzhi
Yang, Junan
Huang, Keju
Liu, Hui
Powiązania:
https://bibliotekanauki.pl/articles/2086889.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
complex-valued residual network
specific emitter identification
fingerprint characteristic
attention mechanism
one-dimensional convolution
sieć rezydualna o złożonej wartości
specyficzna identyfikacja emiterów
charakterystyka linii papilarnych
mechanizm uwagi
splot jednowymiarowy
Opis:
Specific emitter identification (SEI) can distinguish single-radio transmitters using the subtle features of the received waveform. Therefore, it is used extensively in both military and civilian fields. However, the traditional identification method requires extensive prior knowledge and is time-consuming. Furthermore, it imposes various effects associated with identifying the communication radiation source signal in complex environments. To solve the problem of the weak robustness of the hand-crafted feature method, many scholars at home and abroad have used deep learning for image identification in the field of radiation source identification. However, the classification method based on a real-numbered neural network cannot extract In-phase/Quadrature (I/Q)-related information from electromagnetic signals. To address these shortcomings, this paper proposes a new SEI framework for deep learning structures. In the proposed framework, a complex-valued residual network structure is first used to mine the relevant information between the in-phase and orthogonal components of the radio frequency baseband signal. Then, a one-dimensional convolution layer is used to a) directly extract the features of a specific one-dimensional time-domain signal sequence, b) use the attention mechanism unit to identify the extracted features, and c) weight them according to their importance. Experiments show that the proposed framework having complex-valued residual networks with attention mechanism has the advantages of high accuracy and superior performance in identifying communication radiation source signals.
Źródło:
Bulletin of the Polish Academy of Sciences. Technical Sciences; 2021, 69, 5; e138814, 1--10
0239-7528
Pojawia się w:
Bulletin of the Polish Academy of Sciences. Technical Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies