Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "resolvent operators" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Existence and controllability of fractional-order impulsive stochastic system with infinite delay
Autorzy:
Guendouzi, Toufik
Powiązania:
https://bibliotekanauki.pl/articles/729324.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
existence result
approximate controllability
fractional stochastic differential equations
resolvent operators
infinite delay
Opis:
This paper is concerned with the existence and approximate controllability for impulsive fractional-order stochastic infinite delay integro-differential equations in Hilbert space. By using Krasnoselskii's fixed point theorem with stochastic analysis theory, we derive a new set of sufficient conditions for the approximate controllability of impulsive fractional stochastic system under the assumption that the corresponding linear system is approximately controllable. Finally, an example is provided to illustrate the obtained theory.
Źródło:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization; 2013, 33, 1; 65-87
1509-9407
Pojawia się w:
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
On self-adjoint operators in Krein spaces constructed by Clifford algebra Cl2
Autorzy:
Kuzhel, S.
Patsyuck, O.
Powiązania:
https://bibliotekanauki.pl/articles/256050.pdf
Data publikacji:
2012
Wydawca:
Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. Wydawnictwo AGH
Tematy:
Krein spaces
extension theory of symmetric operators
operators with empty resolvent set
J-self-adjoint operators
Clifford algebra Cl2
Opis:
Let J and R be anti-commuting fundamental symmetries in a Hilbert space ℘. The operators J and R can be interpreted as basis (generating) elements of the complex Clifford algebra Cl2(J,R) := span{I, J;R, iJR}. An arbitrary non-trivial fundamental symmetry from Cl2(J,R) is determined by the formula [formula]. Let S be a symmetric operator that commutes with Cl2(J,R). The purpose of this paper is to study the sets [formula] of self-adjoint extensions of S in Krein spaces generated by fundamental symmetries [formula]. We show that the sets [formula] and [formula] are unitarily equivalent for different [formula] and describe in detail the structure of operators [formula] with empty resolvent set.
Źródło:
Opuscula Mathematica; 2012, 32, 2; 297-316
1232-9274
2300-6919
Pojawia się w:
Opuscula Mathematica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies