Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "output regularisation" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Colour Difference Classification for Dyed Fabrics Based on Differential Evolution with Dynamic Parameter Selection to Optimise the Output Regularisation Extreme Learning Machine
Wybór parametrów w celu optymalizacji regularyzacji wyjściowej maszyny uczącej się
Autorzy:
Zhou, Zhiyu
Liu, Dexin
Zhang, Jianxin
Zhu, Zefei
Yang, Donghe
Jiang, Likai
Powiązania:
https://bibliotekanauki.pl/articles/1419657.pdf
Data publikacji:
2021
Wydawca:
Sieć Badawcza Łukasiewicz - Instytut Biopolimerów i Włókien Chemicznych
Tematy:
colour difference classification
differential evolution
extreme learning machine
output regularisation
parameter selection
klasyfikacja różnicy kolorów
ewolucja różnicowa
maszyna ucząca się
regularyzacja wyjściowa
dobór parametru
Opis:
A novel optimisation technique based on the differential evolution (DE) algorithm with dynamic parameter selection (DPS-DE) is proposed to develop a colour difference classification model for dyed fabrics, improve the classification accuracy, and optimise the output regularisation extreme learning machine (RELM). The technique proposed is known as DPS-DE-RELM and has three major differences compared with DE-ELM: (1) Considering that the traditional ELM provides an illness solution based on the output weights, DE is proposed to optimise the output of the RELM. (2) Considering the simple parameter setting of the traditional algorithm, the DE algorithm with DPS is adopted. (3) For DPS, an optimal range of parameters is chosen, and the efficiency of the algorithm is significantly improved. This study analyses the colour difference classification of fabric images captured under standard lighting based on the DPS-DE-RELM algorithm. First, the colour difference of the fabric images is calculated and six color-difference-related features extracted, and second the features are classified into five different levels based on the perception of humans. Finally, a colour difference classification model is built based on the DPS-DERELM algorithm, and then the optimal classification model suitable for this study is selected. The experimental results show that the output method with regularisation parameters can achieve a maximum classification accuracy of 98.87%, which is higher compared with the aforementioned optimised original ELM algorithm, which can achieve a maximum accuracy of 84.67%. Therefore, the method proposed has the advantages of greater convergence speed, high classification accuracy, and robustness.
W pracy zaproponowano nowatorską technikę optymalizacji opartą na algorytmie ewolucji różnicowej (DE) z doborem parametrów (DPS-DE) w celu opracowania modelu klasyfikacji różnicy kolorów dla tkanin barwionych, poprawy dokładności klasyfikacji i optymalizacji regularyzacji wyjściowej maszyny do uczącej się (RELM). Zaproponowana technika jest znana jako DPS-DE-RELM i cechuje się trzema głównymi różnicami w porównaniu do DE-ELM: (1) Biorąc pod uwagę, że tradycyjny ELM zapewnia rozwiązanie w oparciu o wagi wyjściowe, proponuje się DE w celu optymalizacji wydajności RELM. (2) Biorąc pod uwagę proste ustawienie parametrów tradycyjnego algorytmu, przyjęto algorytm DE z DPS. (3) W przypadku DPS wybierany jest optymalny zakres parametrów, a wydajność algorytmu znacznie się poprawia. Podczas badania przeanalizowano klasyfikację różnic kolorów obrazów tkanin zarejestrowanych w standardowym oświetleniu w oparciu o algorytm DPS-DE-RELM. Po pierwsze, obliczono różnicę kolorów obrazów tkanin i wyodrębniono sześć cech związanych z różnicą kolorów, a po drugie cechy te zaklasyfikowano na pięciu różnych poziomach w oparciu o percepcję ludzi. Na koniec zbudowano model klasyfikacji różnicy kolorów w oparciu o algorytm DPS-DE-RELM, a następnie wybrano optymalny model klasyfikacji odpowiedni do tego badania. Wyniki eksperymentalne pokazały, że metoda wyjściowa z parametrami regularyzacji może osiągnąć maksymalną dokładność klasyfikacji wynoszącą 98,87%, czyli wyższą w porównaniu z zoptymalizowanym oryginalnym algorytmem ELM, który może osiągnąć maksymalną dokładność na poziomie 84,67%. Stwierdzono, że zaproponowana metoda niesie ze sobą korzyści w postaci większej szybkości zbieżności, wysokiej dokładności klasyfikacji i odporności.
Źródło:
Fibres & Textiles in Eastern Europe; 2021, 3 (147); 97-102
1230-3666
2300-7354
Pojawia się w:
Fibres & Textiles in Eastern Europe
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies