Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "nonlinear multi agent systems" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
Cluster consensus of general fractional-order nonlinear multi agent systems via adaptive sliding mode controller
Autorzy:
Yaghoubi, Zahra
Talebi, Heidar Ali
Powiązania:
https://bibliotekanauki.pl/articles/230002.pdf
Data publikacji:
2019
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
nonlinear multi agent systems
cluster consensus
fractional-order systems
adaptive sliding mode controller
Opis:
In this paper cluster consensus is investigated for general fractional-order multi agent systems with nonlinear dynamics via adaptive sliding mode controller. First, cluster consensus for fractional-order nonlinear multi agent systems with general form is investigated. Then, cluster consensus for the fractional-order nonlinear multi agent systems with first-order and general form dynamics is investigated by using adaptive sliding mode controller. Sufficient conditions for achieving cluster consensus for general fractional-order nonlinear multi agent systems are proved based on algebraic graph theory, Lyapunov stability theorem and Mittag-Leffler function. Finally, simulation examples are presented for first-order and general form multi agent systems, i.e. a single-link flexible joint manipulator which demonstrates the efficiency of the proposed adaptive controller.
Źródło:
Archives of Control Sciences; 2019, 29, 4; 643-665
1230-2384
Pojawia się w:
Archives of Control Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Nonlinear convergence algorithm: structural properties with doubly stochastic quadratic operators for multi-agent systems
Autorzy:
Abdulghafor, R.
Turaev, S.
Zeki, A.
Abubaker, A.
Powiązania:
https://bibliotekanauki.pl/articles/91876.pdf
Data publikacji:
2018
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
doubly stochastic quadratic operators
nonlinear convergence algorithm
consensus problem
multi-agent systems
kwadratowe operatory podwójnie stochastyczne
problem konsensusu
systemy wieloagentowe
Opis:
This paper proposes nonlinear operator of extreme doubly stochastic quadratic operator (EDSQO) for convergence algorithm aimed at solving consensus problem (CP) of discrete-time for multi-agent systems (MAS) on n-dimensional simplex. The first part undertakes systematic review of consensus problems. Convergence was generated via extreme doubly stochastic quadratic operators (EDSQOs) in the other part. However, this work was able to formulate convergence algorithms from doubly stochastic matrices, majorization theory, graph theory and stochastic analysis. We develop two algorithms: 1) the nonlinear algorithm of extreme doubly stochastic quadratic operator (NLAEDSQO) to generate all the convergent EDSQOs and 2) the nonlinear convergence algorithm (NLCA) of EDSQOs to investigate the optimal consensus for MAS. Experimental evaluation on convergent of EDSQOs yielded an optimal consensus for MAS. Comparative analysis with the convergence of EDSQOs and DeGroot model were carried out. The comparison was based on the complexity of operators, number of iterations to converge and the time required for convergences. This research proposed algorithm on convergence which is faster than the DeGroot linear model.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2018, 8, 1; 49-61
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies