Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multidimensional visualisation" wg kryterium: Temat


Wyświetlanie 1-2 z 2
Tytuł:
The use of the visualisation of multidimensional data using PCA to evaluate possibilities of the division of coal samples space due to their suitability for fluidised gasification
Zastosowanie wizualizacji wielowymiarowych danych za pomocą PCA do oceny możliwości podziału próbek węgla ze względu na ich przydatność do zgazowania
Autorzy:
Jamróz, D.
Niedoba, T.
Surowiak, A.
Tumidajski, T.
Powiązania:
https://bibliotekanauki.pl/articles/219788.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
analiza PCA
wizualizacja wielowymiarowa
zgazowanie węgla
wzbogacanie w osadzarkach
principal component analysis (PCA)
multidimensional visualisation
coal gasification
jigging
Opis:
Methods serving to visualise multidimensional data through the transformation of multidimensional space into two-dimensional space, enable to present the multidimensional data on the computer screen. Thanks to this, qualitative analysis of this data can be performed in the most natural way for humans, through the sense of sight. An example of such a method of multidimensional data visualisation is PCA (principal component analysis) method. This method was used in this work to present and analyse a set of seven-dimensional data (selected seven properties) describing coal samples obtained from Janina and Wieczorek coal mines. Coal from these mines was previously subjected to separation by means of a laboratory ring jig, consisting of ten rings. With 5 layers of both types of coal (with 2 rings each) were obtained in this way. It was decided to check if the method of multidimensional data visualisation enables to divide the space of such divided samples into areas with different suitability for the fluidised gasification process. To that end, the card of technological suitability of coal was used (Sobolewski et al., 2012; 2013), in which key, relevant and additional parameters, having effect on the gasification process, were described. As a result of analyses, it was stated that effective determination of coal samples suitability for the on-surface gasification process in a fluidised reactor is possible. The PCA method enables the visualisation of the optimal subspace containing the set requirements concerning the properties of coals intended for this process.
Proces zgazowania węgla jest jedną z technologii, które zyskują coraz szerszą uwagę wśród technologów zajmujących się jego przeróbką i utylizacją. Ze względu na typ zgazowania wyróżnia się dwa główne sposoby: zgazowanie naziemne i podziemne. Każdy z tych typów można jednak przeprowadzić za pomocą różnych technologii. W przypadku zgazowania naziemnego, jedną z takich technologii jest zgazowanie w reaktorze fluidalnym. Do tego typu zgazowania zostały opracowane wytyczne w ramach projektu NCBiR nr 23.23.100.8498/R34 pt. „Opracowanie technologii zgazowania węgla dla wysokoefektywnej produkcji paliw i energii” w ramach strategicznego programu badań naukowych i prac rozwojowych pt. „Zaawansowane technologie pozyskiwania energii” (Marciniak-Kowalska, 2011-12; Sobolewski et al., 2012; 2013; Strugała et al., 2011; 2012). Autorzy wybrali główne z tych wytycznych, dotyczących zalecanych poziomów określonych cech węgla. W celu zbadania węgla pod kątem ich przydatności do zgazowania pobrano próbki dwóch węgli: pochodzących z Zakładu Górniczego Janina oraz z Kopalni Węgla Kamiennego Wieczorek. Każdy z tych węgli został poddany procesowi wzbogacania w laboratoryjnej osadzarce pierścieniowej (10 pierścieni, węgiel w klasach wydzielonych z przedziału 0-18 mm). Po zakończeniu procesu rozdziału materiał podzielono na 5 warstw (po 2 pierścienie) i każdy z nich rozsiano na sitach na 10 klas ziarnowych, ustalając wychody warstw i klas. Następnie, tak otrzymane produkty – klasy ziarnowe, po wydzieleniu analitycznych próbek, poddano chemicznej analizie elementarnej i technicznej węgla, w celu scharakteryzowania właściwości wpływających na procesy zgazowania. Łącznie z obu kopalń uzyskano 99 próbek (50 z kopalni Janina oraz 49 z kopalni Wieczorek – w jednej z warstw nie uzyskano klasy 16-18 mm) charakteryzowanych przez następujące parametry: zawartość siarki całkowitej, zawartość wodoru, zawartość azotu, zawartość chloru, zawartość węgla całkowitego, ciepło spalania oraz zawartość popiołu. Przykładowe dane dla jednej z otrzymanych warstw przedstawiono w tabeli 1. Dodatkowo wykorzystano kartę przydatności technologicznej węgla (Sobolewski et al., 2012; 2013), w której opisano parametry kluczowe, istotne oraz dodatkowe, mające wpływ na proces zgazowania. Na jej podstawie oznaczono próbki węgla, które w sposób efektywny poddają się procesowi zgazowania. W celu wizualizacji danych zastosowano jedną z nowoczesnych metod wielowymiarowej statystycznej analizy czynnikowej – metodę PCA (ang. Principal Component Analysis). W metodzie tej dokonuje się rzutu prostopadłego wielowymiarowych danych na płaszczyznę reprezentowaną przez specjalnie wybrane wektory V1,V2. Są to wektory własne, odpowiadające dwóm największym (co do modułu) wartościom własnym macierzy kowariancji zbioru obserwacji. Opisany dobór wektorów V1,V2 pozwala uzyskać obraz na płaszczyźnie prezentujący najwięcej zmienności danych. Algorytm i zasady tej metody zostały szczegółowo zaprezentowane w podrozdziale 3 artykułu. Za pomocą metody PCA dokonano trzech typów analiz. Pierwszy obraz miał na celu rozpoznanie, czy możliwa jest identyfikacja pochodzenia węgla, czyli rozdział węgla pochodzącego z ZG Janina od węgla z KWK Wieczorek. Odpowiedź była twierdząca. Na tak przygotowane dane narzucono następnie warunki wynikające z nałożenia wymogów określonych w karcie przydatności technologicznej węgla. Okazało się, że przy wzięciu pod uwagę wszystkich warunków jedynie 17 próbek z ZG Janina i zaledwie jedna z KWK Wieczorek spełnia wszystkie kryteria, co przedstawiono na rysunku 2. Stwierdzono, że dzieje się tak głównie z powodu zawartości chloru, która wykracza poza nałożone limity. Cecha ta nie wpływa jednak w kluczowy sposób na sam proces zgazowania a istotna jest ze względu na aspekt ochrony środowiska. Dlatego dokonano podobnej analizy, ale przy odrzuceniu warunku dotyczącego tej cechy. Po odrzuceniu wymogów dotyczących zawartości chloru okazało się, że 37 próbek z ZG Janina oraz 41 próbek z KWK Wieczorek spełnia pozostałe zalecenia odnośnie naziemnego zgazowania w reaktorze fluidalnym. Jest to potwierdzenie wcześniejszych obserwacji autorów w tym zakresie. W obu przypadkach wizualizacja wielowymiarowa przy użyciu PCA pozwoliła stwierdzić, że obrazy punktów reprezentujących próbki węgla bardziej podatnego na zgazowanie oraz mniej przydatnego do zgazowania zajmują osobne podobszary przestrzeni oraz gromadzą się w skupiskach, które można łatwo od siebie odseparować. Stwierdzono więc, że metoda PCA pozwala podzielić przestrzeń próbek na obszary o różnej przydatności do procesu zgazowania fluidalnego zarówno gdy przyjęto ograniczenie dotyczące zawartości chloru jak i przy jego pominięciu. Zastosowanie metody PCA w celu identyfikacji przydatności próbek węgla do zgazowania jest nowatorskie i nie było wcześniej stosowane. Istnieje możliwość zastosowania również innych metod w tym zakresie. Należy jednak podkreślić, że niewątpliwą zaletą metody PCA jest fakt, że w trakcie wizualizacji nie ma konieczności doboru żadnych parametrów w przeciwieństwie do wielu innych metod wizualizacji wielowymiarowych danych.
Źródło:
Archives of Mining Sciences; 2016, 61, 3; 523-535
0860-7001
Pojawia się w:
Archives of Mining Sciences
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Reservoir computing and data visualisation
Autorzy:
Ashour, W.
Wang, T. D.
Fyfe, C.
Powiązania:
https://bibliotekanauki.pl/articles/91852.pdf
Data publikacji:
2012
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
reservoir computing
data visualisation
time series
Echo State Networks
ESNs
multidimensional scaling criterion
fixed latent space
Opis:
We consider the problem of visualisation of high dimensional multivariate time series. A data analyst in creating a two dimensional projection of such a time series might hope to gain some intuition into the structure of the original high dimensional data set. We review a method for visualising time series data using an extension of Echo State Networks (ESNs).The method uses the multidimensional scaling criterion in order to create a visualisation of the time series after its representation in the reservoir of the ESN. We illustrate the method with two dimensional maps of a financial time series. The method is then compared with a mapping which uses a fixed latent space and a novel objective function.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2012, 2, 3; 215-222
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies