Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "multidimensional interval arithmetic" wg kryterium: Temat


Wyświetlanie 1-3 z 3
Tytuł:
Is an interval the right result of arithmetic operations on intervals?
Autorzy:
Piegat, A.
Landowski, M.
Powiązania:
https://bibliotekanauki.pl/articles/330098.pdf
Data publikacji:
2017
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
interval arithmetic
one dimensional interval arithmetic
multidimensional interval arithmetic
RDM interval arithmetic
arytmetyka interwałowa
arytmetyka interwałowa jednowymiarowa
arytmetyka interwałowa wielowymiarowa
Opis:
For many scientists interval arithmetic (IA, I arithmetic) seems to be easy and simple. However, this is not true. Interval arithmetic is complicated. This is confirmed by the fact that, for years, new, alternative versions of this arithmetic have been created and published. These new versions tried to remove shortcomings and weaknesses of previously proposed options of the arithmetic, which decreased the prestige not only of interval arithmetic itself, but also of fuzzy arithmetic, which, to a great extent, is based on it. In our opinion, the main reason for the observed shortcomings of the present IA is the assumption that the direct result of arithmetic operations on intervals is also an interval. However, the interval is not a direct result but only a simplified representative (indicator) of the result. This hypothesis seems surprising, but investigations prove that it is true. The paper shows what conditions should be satisfied by the result of interval arithmetic operations to call it a “result”, how great its dimensionality is, how to perform arithmetic operations and solve equations. Examples illustrate the proposed method of interval computations.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2017, 27, 3; 575-590
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A realistic tolerant solution of a system of interval linear equations with the use of multidimensional interval arithmetic
Autorzy:
Piegat, Andrzej
Pluciński, Marcin
Powiązania:
https://bibliotekanauki.pl/articles/11542697.pdf
Data publikacji:
2023
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
interval arithmetic
interval linear equation
tolerable solution
multidimensional interval arithmetic
arytmetyka interwałowa
równanie liniowe przedziałowe
arytmetyka interwałowa wielowymiarowa
Opis:
The paper presents a method of determining the robustness of solutions of systems of interval linear equations (ILEs). The method can be applied also for the ILE systems for which it has been impossible to find solutions so far or for which solutions in the form of improper intervals have been obtained (which cannot be implemented in practice). The research conducted by the authors has shown that for many problems it is impossible to arrive at ideal solutions that would be fully robust to data uncertainty. However, partially robust solutions can be obtained, and those with the highest robustness can be selected and put into practice. The paper shows that the degree of robustness to the uncertainty of the entire system can be calculated on the basis of the degrees of robustness of individual equations, which greatly simplifies calculations. The presented method is illustrated with a series of examples (also benchmark ones) that facilitate its understanding. It is an extension of the authors’ previously published method for first-order ILEs.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2023, 33, 2; 229--247
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A decomposition approach to type 2 interval arithmetic
Autorzy:
Piegat, Andrzej
Dobryakova, Larisa
Powiązania:
https://bibliotekanauki.pl/articles/330100.pdf
Data publikacji:
2020
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
multidimensional RDM interval arithmetic
type 2 interval arithmetic
RDM type 2 interval arithmetic
decomposition type 2 interval arithmetic
interval arithmetic
Opis:
The classic interval has precise borders A = [a, ā] . Therefore, it can be called a type 1 interval. Because of great practical importance of such interval data, several versions of type 1 interval arithmetic have been created. However, sometimes precise borders a and ā of intervals cannot be determined in practice. If the borders are uncertain, then we have to do with type 2 intervals. A type 2 interval can be denoted as AT2 = [aL, aR], [āL, āR]. The paper presents multidimensional decomposition RDM type 2 interval arithmetic (D-RDM-T2-I arithmetic), where RDM means relative-distance measure. The decomposition approach considerably simplifies calculations and is transparent for users. Apart from this arithmetic, examples of its applications are also presented. To the authors’ best knowledge, no papers on this arithmetic exist. D-RDM-T2-I arithmetic is necessary to create type 2 fuzzy arithmetic based on horizontal µ-cuts, which the authors aim to do.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2020, 30, 1; 185-201
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies