Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "mapa użytkowanych gruntów" wg kryterium: Temat


Wyświetlanie 1-1 z 1
Tytuł:
Using a GEOBIA framework for integrating different data sources and classification methods in context of land use/land cover mapping
Autorzy:
Osmólska, A.
Hawryło, P.
Powiązania:
https://bibliotekanauki.pl/articles/145304.pdf
Data publikacji:
2018
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
mapa użytkowanych gruntów
mapa pokrycia terenu
mapa leśna
data fusion
random forest
supervised classification
Sentinel-2
Opis:
Land use/land cover (LULC) maps are important datasets in various environmental projects. Our aim was to demonstrate how GEOBIA framework can be used for integrating different data sources and classification methods in context of LULC mapping.We presented multi-stage semi-automated GEOBIA classification workflow created for LULC mapping of Tuszyma Forestry Management area based on multi-source, multi-temporal and multi-resolution input data, such as 4 bands- aerial orthophoto, LiDAR-derived nDSM, Sentinel-2 multispectral satellite images and ancillary vector data. Various classification methods were applied, i.e. rule-based and Random Forest supervised classification. This approach allowed us to focus on classification of each class ‘individually’ by taking advantage from all useful information from various input data, expert knowledge, and advanced machine-learning tools. In the first step, twelve classes were assigned in two-steps rule-based classification approach either vector-based, ortho- and vector-based or orthoand Lidar-based. Then, supervised classification was performed with use of Random Forest algorithm. Three agriculture-related LULC classes with vegetation alternating conditions were assigned based on aerial orthophoto and Sentinel-2 information. For classification of 15 LULC classes we obtained 81.3% overall accuracy and kappa coefficient of 0.78. The visual evaluation and class coverage comparison showed that the generated LULC layer differs from the existing land cover maps especially in relative cover of agriculture-related classes. Generally, the created map can be considered as superior to the existing data in terms of the level of details and correspondence to actual environmental and vegetation conditions that can be observed in RS images.
Źródło:
Geodesy and Cartography; 2018, 67, 1; 99-116
2080-6736
2300-2581
Pojawia się w:
Geodesy and Cartography
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-1 z 1

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies