Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Multiplicative Algorithm" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
Multiplicative Algorithm for Correntropy-Based Nonnegative Matrix Factorization
Autorzy:
Hosseini-Asl, E.
Zurada, J. M.
Powiązania:
https://bibliotekanauki.pl/articles/108758.pdf
Data publikacji:
2013
Wydawca:
Społeczna Akademia Nauk w Łodzi
Tematy:
Nonnegative Matrix Factorization (NMF)
Correntropy
Multiplicative Algorithm
Document Clustering
Opis:
Nonnegative matrix factorization (NMF) is a popular dimension reduction technique used for clustering by extracting latent features from highdimensional data and is widely used for text mining. Several optimization algorithms have been developed for NMF with different cost functions. In this paper we evaluate the correntropy similarity cost function. Correntropy is a nonlinear localized similarity measure which measures the similarity between two random variables using entropy-based criterion, and is especially robust to outliers. Some algorithms based on gradient descent have been used for correntropy cost function, but their convergence is highly dependent on proper initialization and step size and other parameter selection. The proposed general multiplicative factorization algorithm uses the gradient descent algorithm with adaptive step size to maximize the correntropy similarity between the data matrix and its factorization. After devising the algorithm, its performance has been evaluated for document clustering. Results were compared with constrained gradient descent method using steepest descent and L-BFGS methods. The simulations show that the performance of steepest descent and LBFGS convergence are highly dependent on gradient descent step size which depends on σ parameter of correntropy cost function. However, the multiplicative algorithm is shown to be less sensitive to σ parameterand yields better clustering results than other algorithms. The results demonstrate that clustering performance measured by entropy and purity improve the clustering. The multiplicative correntropy-based algorithm also shows less variation in accuracy of document clusters for variable number of clusters. The convergence of each algorithm is also investigated, and the experiments have shown that the multiplicative algorithm converges faster than L-BFGS and steepest descent method.
Źródło:
Journal of Applied Computer Science Methods; 2013, 5 No. 2; 89-104
1689-9636
Pojawia się w:
Journal of Applied Computer Science Methods
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Pipelined division of signed numbers with the use of residue arithmetic in FPGA
Autorzy:
Czyżak, M.
Smyk, R.
Ulman, Z.
Powiązania:
https://bibliotekanauki.pl/articles/97191.pdf
Data publikacji:
2013
Wydawca:
Politechnika Poznańska. Wydawnictwo Politechniki Poznańskiej
Tematy:
residue number system
division
multiplicative division algorithm
scaling
FPGA
Opis:
An architecture of a pipelined signed residue divider for small number ranges is presented. The divider makes use of the multiplicative division algorithm where initially the reciprocal of the divisor is calculated and subsequently multiplied by the dividend. The divisor represented in the signed binary form is used to compute the approximated reciprocal in the residue form by the table look-up. In order to reduce the needed length of the look-up table address, a reciprocal computation algorithm based on segmentation of the divisor into two segments is used. The signed approximate reciprocal, transformed to the residue representation, is stored in look-up tables division and multiplied by the dividend in the residue form. The obtained quotient is scaled. The pipelined realization of the divider in the FPGA environment is also shown.
Źródło:
Computer Applications in Electrical Engineering; 2013, 11; 455-464
1508-4248
Pojawia się w:
Computer Applications in Electrical Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
The training of multiplicative neuron model based artificial neural networks with differential evolution algorithm for forecasting
Autorzy:
Bas, E.
Powiązania:
https://bibliotekanauki.pl/articles/91575.pdf
Data publikacji:
2016
Wydawca:
Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
Tematy:
artificial neural networks
multiplicative neuron model
differential evolution
algorithm
forecasting
sztuczne sieci neuronowe
algorytm
prognozowanie
Opis:
In recent years, artificial neural networks have been commonly used for time series forecasting by researchers from various fields. There are some types of artificial neural networks and feed forward artificial neural networks model is one of them. Although feed forward artificial neural networks gives successful forecasting results they have a basic problem. This problem is architecture selection problem. In order to eliminate this problem, Yadav et al. (2007) proposed multiplicative neuron model artificial neural network. In this study, differential evolution algorithm is proposed for the training of multiplicative neuron model for forecasting. The proposed method is applied to two well-known different real world time series data.
Źródło:
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 1; 5-11
2083-2567
2449-6499
Pojawia się w:
Journal of Artificial Intelligence and Soft Computing Research
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
An efficient algorithm for estimating the parameters of superimposed exponential signals in multiplicative and additive noise
Autorzy:
Bian, J.
Peng, H.
Xing, J.
Liu, Z.
Li, H.
Powiązania:
https://bibliotekanauki.pl/articles/331007.pdf
Data publikacji:
2013
Wydawca:
Uniwersytet Zielonogórski. Oficyna Wydawnicza
Tematy:
superimposed exponential signals
modified Newton–Raphson algorithm
multiplicative noise
additive noise
least squares estimator
algorytm Newtona-Raphsona
metoda najmniejszych kwadratów
estymator
Opis:
This paper considers parameter estimation of superimposed exponential signals in multiplicative and additive noise which are all independent and identically distributed. A modified Newton–Raphson algorithm is used to estimate the frequencies of the considered model, which is further used to estimate other linear parameters. It is proved that the modified Newton–Raphson algorithm is robust and the corresponding estimators of frequencies attain the same convergence rate with Least Squares Estimators (LSEs) under the same noise conditions, but it outperforms LSEs in terms of the mean squared errors. Finally, the effectiveness of the algorithm is verified by some numerical experiments.
Źródło:
International Journal of Applied Mathematics and Computer Science; 2013, 23, 1; 117-129
1641-876X
2083-8492
Pojawia się w:
International Journal of Applied Mathematics and Computer Science
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies