Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Electroencephalogram (EEG)" wg kryterium: Temat


Wyświetlanie 1-4 z 4
Tytuł:
PREDICTING THE MENTAL STRESS LEVEL OF DRIVERS IN A BRAKING CAR PROCESS USING ARTIFICIAL INTELLIGENCE
Autorzy:
Sugiono, Sugiono
Prasetya, Renaldi P
Fanani, Angga A
Cahyawati, Amanda N
Powiązania:
https://bibliotekanauki.pl/articles/2138164.pdf
Data publikacji:
2022-02-23
Wydawca:
Fundacja Edukacji Medycznej, Promocji Zdrowia, Sztuki i Kultury Ars Medica
Tematy:
Artificial intelligence (AI)
Electroencephalogram (EEG)
safety distance
transportation safety
mental stress
Opis:
Reducing the physical and mental weariness of drivers is significant in improving healthy and safe driving. This paper is aim to predict the stress level of drivers while braking in various conditions of the track. By discovering the drivers’ mental stress level, we are able to safely and comfortably adjust the distance in relation to the vehicle ahead. The initial step used was a study related to Artificial Intelligence (AI), Electroencephalogram (EEG), safe distance in braking, and the theory of mental stress. The data was collected by doing a direct measurement of drivers’stress levels using the EEG tool. The respondents were 5 parties around 30-50 years old who had experience in driving for> 5 years. The research asembled 400 pieces of data about braking including the data of the velocity before braking, track varieties (cityroad, rural road, residential road, and toll road), braking distance, stress level (EEG), and focus (EEG). The database constructed was used to input the machine learning (AI) – Back Propagation Neural Network (BPNN) in order to predict the drivers’ mental stress level. Referring to the data collection, each road type gave a different value of metal stress and focus. City road drivers used an average velocity of 23.24 Km/h with an average braking distance of 11.17 m which generated an average stress level of 53.44 and a focus value of 45.76.Under other conditions, city road drivers generated a 52.11 stress level, the rural road = 48.65, and 50.23 for the toll road. BPNN Training with 1 hidden layer, neuron = 17, ground transfer function, sigmoid linear, and optimation using Genetic Algorithm (GA) obtained the Mean Square Error (MSE) value = 0.00537. The road infrastructure, driving behavior, and emerging hazards in driving took part in increasing the stress level and concentration needs of the drivers. The conclusion may be drawn that the available data and the chosen BPNN structure were appropriate to be used in training and be utilized to predict drivers’ focus and mental stress level. This AI module is beneficial in inputting the data to the braking car safety system by considering those mental factors completing the existing technical factor considerations.
Źródło:
Acta Neuropsychologica; 2022, 20(1); 1-15
1730-7503
2084-4298
Pojawia się w:
Acta Neuropsychologica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Metody eliminacji artefaktów w sygnałach EEG
Methods of EEG artifacts elimination
Autorzy:
Plechawska-Wójcik, M.
Powiązania:
https://bibliotekanauki.pl/articles/408247.pdf
Data publikacji:
2015
Wydawca:
Politechnika Lubelska. Wydawnictwo Politechniki Lubelskiej
Tematy:
elektroencefalogram
pomiar elektroencefalograficzny
pomiar szumu
artefakt EEG
electroencephalogram
electroencephalography measurement
noise measurement
EEG artifacts
Opis:
Rejestracja sygnałów elektroencefalograficznych (EEG) jest niemal zawsze związana z zapisem różnego rodzaju artefaktów, które zaszumianą odczyt i utrudniają analizę zebranych danych. Artefakty te mogą być zauważalne w pojedynczych kanałach, ale bardzo często muszą być korygowane na przestrzeni kilku kanałów jednocześnie. Ich pochodzenie może być różnorodne. Wyróżnia się artefakty sieciowe, sprzętowe jak również kilka rodzajów artefaktów mięśniowych, pochodzących od badanej osoby. W ostatnich latach obserwuje się wzrost zainteresowania badaniami EEG nie tylko w zastosowaniach ambulatoryjnych i klinicznych, ale także w analizach psychologicznych oraz w budowie nowoczesnych interfejsów człowiekmaszyna. Artykuł przedstawia studium przypadku zastosowania analiz klasyfikacyjnych w zagadnieniach korekcji artefaktów sygnału EEG.
Registration of electroencephalography signals (EEG) is almost always associated with recording different kinds of artifacts that makes it difficult to read and analyze collected data. These artifacts may be noticeable in the individual channels, but very often they have to be adjusted over several channels simultaneously. Their origin can be varied. Among the most typical are network and hardware artifacts as well as several types of muscle artifacts, derived from the tested person. In recent years increased interest in EEG studies might be noticed. EEG signals are applied not only in the outpatient and clinical applications, but also in psychological analyses and in construction of modern human-machine interfaces. This article presents a case study of classification analysis application in EEG artifact correction tasks.
Źródło:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska; 2015, 2; 39-46
2083-0157
2391-6761
Pojawia się w:
Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Zastosowanie QEEG w psychiatrii z uwzględnieniem populacji rozwojowej
Application of QEEG in psychiatry taking into account the population of children and adolescents
Autorzy:
Wiśniewska, Martyna
Gmitrowicz, Agnieszka
Pawełczyk, Nina
Powiązania:
https://bibliotekanauki.pl/articles/941117.pdf
Data publikacji:
2016
Wydawca:
Medical Communications
Tematy:
child and adolescent psychiatry
neurofeedback
quantitative analysis of electroencephalogram
ilościowa analiza eeg
psychiatria dzieci i młodzieży
Opis:
The aim of the study is to discuss QEEG method in the context of its usefulness for confirming neurodevelopmental disorders, and evaluating the effectiveness of psychiatric and/or psychological interventions, based on a review of available literature. It attempts to determine the applicability of this method in child and adolescent psychiatry. QEEG is quantitative analysis of EEG record using statistical processing of the signal. This method is commonly used to prepare therapeutic recommendations for neurofeedback training. Attempts at implementation of QEEG in diagnosis of various diseases have been increasingly often described in foreign studies. This also applies to psychiatry. Most reports still tackle attention deficit hyperactivity disorder (comparison of the effects of neurofeedback therapy and pharmacological interactions, distinguishing subtypes of the disease). Other analyses are concerned with diagnosing mental illnesses, differentiating their subtypes, predicting effects of pharmacological therapy, comparing the effectiveness of different treatments. Studies of patients with depression and schizophrenia are also becoming popular. QEEG has proved useful in determining the efficacy of pharmacological treatment of depression. According to the researchers, this method enables prediction of schizophrenia, differentiation of its subtypes, and determining the effectiveness of its treatment. There are studies devoted to the analysis of changes in EEG characteristic of methamphetamine addiction or eating disorders. There is, however, little research regarding the use of this method in child and adolescent psychiatry, even though there obviously exist many studies related to the use of QEEG in neurofeedback therapy in the youngest patients with attention deficit hyperactivity disorder, or studies on the effectiveness of various types of medications used in the treatment of this disease. One study discussing EEG biofeedback training in autistic children has also been published. It seems necessary to expand research on the use of quantitative QEEG in work with children and adolescents suffering from psychiatric entities.
Celem pracy jest omówienie metody QEEG w kontekście jej przydatności w stawianiu diagnozy psychiatrycznej oraz monitorowaniu skutków oddziaływań psychologicznych i/lub psychofarmakologicznych na podstawie przeglądu dostępnego piśmiennictwa. Autorki starały się określić zastosowania omawianej metody w psychiatrii dzieci i młodzieży. QEEG polega na ilościowej analizie zapisu EEG za pomocą obróbki statystycznej sygnału. Metoda ta jest powszechnie wykorzystywana w celu przygotowania zaleceń terapeutycznych do treningu neurofeedback. Za granicą coraz częściej pisze się o próbach wdrażania QEEG w diagnostyce różnych chorób – także psychicznych. Większość doniesień nadal dotyczy zagadnień nadpobudliwości psychoruchowej z deficytem uwagi (porównanie skutków neurofeedbacku i oddziaływań farmakologicznych, odróżnianie podtypów choroby). Inne analizy odnoszą się do diagnozowania chorób psychicznych, różnicowania ich podtypów, przewidywania skutków leczenia farmakologicznego, porównania skuteczności poszczególnych metod leczenia. Popularne stają się badania nad pacjentami z depresją i schizofrenią. QEEG okazało się przydatne w ocenie skuteczności farmakoterapii depresji, według badaczy umożliwia też przewidywanie zachorowania na schizofrenię, różnicowanie jej podtypów i określanie skuteczności leczenia. Istnieją badania poświęcone analizie zmian w zapisie QEEG charakterystycznych dla uzależnienia od metamfetaminy i dla zaburzeń odżywiania. Mało jest natomiast analiz na temat użycia tej metody w psychiatrii dzieci i młodzieży – z wyjątkiem badań, które odnoszą się do roli QEEG w terapii neurofeedback pacjentów z zespołem nadpobudliwości psychoruchowej z deficytem uwagi czy skuteczności typów leków używanych w terapii tej choroby. Znaleziono jedną pracę poruszającą problematykę dzieci z autyzmem (w odniesieniu do treningu EEG biofeedback). Konieczne wydaje się poszerzenie badań o zastosowanie ilościowego QEEG w pracy z dziećmi i adolescentami cierpiącymi na choroby psychiczne.
Źródło:
Psychiatria i Psychologia Kliniczna; 2016, 16, 3; 188-193
1644-6313
2451-0645
Pojawia się w:
Psychiatria i Psychologia Kliniczna
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Modified Block Sparse Bayesian Learning-Based Compressive Sensing Scheme For EEG Signals
Autorzy:
Upadhyaya, Vivek
Salim, Mohammad
Powiązania:
https://bibliotekanauki.pl/articles/1844532.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
compressive sensing
CS
mean square error
MSE
structural similarity index measure
SSIM
electroencephalogram
EEG
digital signal processing
DSP
block sparse Bayesian learning
BSBL
Opis:
Advancement in medical technology creates some issues related to data transmission as well as storage. In real-time processing, it is too tedious to limit the flow of data as it may reduce the meaningful information too. So, an efficient technique is required to compress the data. This problem arises in Magnetic Resonance Imaging (MRI), Electrocardiogram (ECG), Electroencephalogram (EEG), and other medical signal processing domains. In this paper, we demonstrate Block Sparse Bayesian Learning (BSBL) based compressive sensing technique on an Electroencephalogram (EEG) signal. The efficiency of the algorithm is described using the Mean Square Error (MSE) and Structural Similarity Index Measure (SSIM) value. Apart from this analysis we also use different combinations of sensing matrices too, to demonstrate the effect of sensing matrices on MSE and SSIM value. And here we got that the exponential and chi-square random matrices as a sensing matrix are showing a significant change in the value of MSE and SSIM. So, in real-time body sensor networks, this scheme will contribute a significant reduction in power requirement due to its data compression ability as well as it will reduce the cost and the size of the device used for real-time monitoring.
Źródło:
International Journal of Electronics and Telecommunications; 2021, 67, 3; 331-336
2300-1933
Pojawia się w:
International Journal of Electronics and Telecommunications
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies