- Tytuł:
- Adapting differential evolution algorithms for continuous optimization via greedy adjustment of control parameters
- Autorzy:
-
Leon, M.
Xiong, N. - Powiązania:
- https://bibliotekanauki.pl/articles/91824.pdf
- Data publikacji:
- 2016
- Wydawca:
- Społeczna Akademia Nauk w Łodzi. Polskie Towarzystwo Sieci Neuronowych
- Tematy:
-
differential evolution
optimization
parameter adaptation - Opis:
- Differential evolution (DE) presents a class of evolutionary and meta-heuristic techniques that have been applied successfully to solve many real-world problems. However, the performance of DE is significantly influenced by its control parameters such as scaling factor and crossover probability. This paper proposes a new adaptive DE algorithm by greedy adjustment of the control parameters during the running of DE. The basic idea is to perform greedy search for better parameter assignments in successive learning periods in the whole evolutionary process. Within each learning period, the current parameter assignment and its neighboring assignments are tested (used) in a number of times to acquire a reliable assessment of their suitability in the stochastic environment with DE operations. Subsequently the current assignment is updated with the best candidate identified from the neighborhood and the search then moves on to the next learning period. This greedy parameter adjustment method has been incorporated into basic DE, leading to a new DE algorithm termed as Greedy Adaptive Differential Evolution (GADE). GADE has been tested on 25 benchmark functions in comparison with five other DE variants. The results of evaluation demonstrate that GADE is strongly competitive: it obtained the best rank among the counterparts in terms of the summation of relative errors across the benchmark functions with a high dimensionality.
- Źródło:
-
Journal of Artificial Intelligence and Soft Computing Research; 2016, 6, 2; 103-118
2083-2567
2449-6499 - Pojawia się w:
- Journal of Artificial Intelligence and Soft Computing Research
- Dostawca treści:
- Biblioteka Nauki