Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Saclé, Jean-François" wg kryterium: Autor


Wyświetlanie 1-2 z 2
Tytuł:
A note on maximal common subgraphs of the Diracs family of graphs
Autorzy:
Bucko, Jozef
Mihók, Peter
Saclé, Jean-François
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/744168.pdf
Data publikacji:
2005
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
maximal common subgraph
Dirac's family
Hamiltonian cycle
Opis:
Let ⁿ be a given set of unlabeled simple graphs of order n. A maximal common subgraph of the graphs of the set ⁿ is a common subgraph F of order n of each member of ⁿ, that is not properly contained in any larger common subgraph of each member of ⁿ. By well-known Dirac's Theorem, the Dirac's family ⁿ of the graphs of order n and minimum degree δ ≥ [n/2] has a maximal common subgraph containing Cₙ. In this note we study the problem of determining all maximal common subgraphs of the Dirac's family $ ^{2n}$ for n ≥ 2.
Źródło:
Discussiones Mathematicae Graph Theory; 2005, 25, 3; 385-390
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
A Note on Neighbor Expanded Sum Distinguishing Index
Autorzy:
Flandrin, Evelyne
Li, Hao
Marczyk, Antoni
Saclé, Jean-François
Woźniak, Mariusz
Powiązania:
https://bibliotekanauki.pl/articles/31342189.pdf
Data publikacji:
2017-02-01
Wydawca:
Uniwersytet Zielonogórski. Wydział Matematyki, Informatyki i Ekonometrii
Tematy:
general edge coloring
total coloring
neighbor-distinguishing index
neighbor sum distinguishing coloring
Opis:
A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set [k] = {1, . . ., k}. These colors can be used to distinguish the vertices of G. There are many possibilities of such a distinction. In this paper, we consider the sum of colors on incident edges and adjacent vertices.
Źródło:
Discussiones Mathematicae Graph Theory; 2017, 37, 1; 29-37
2083-5892
Pojawia się w:
Discussiones Mathematicae Graph Theory
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-2 z 2

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies