Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Niebuhr, B." wg kryterium: Autor


Wyświetlanie 1-4 z 4
Tytuł:
High-resolution Campanian-Maastrichtian carbon and oxygen stable isotopes of bulk-rock and skeletal components: palaeoceanographic and palaeoenviron-mental implications for the Boreal shelf sea
Autorzy:
Wilmsen, M.
Niebuhr, B.
Powiązania:
https://bibliotekanauki.pl/articles/139424.pdf
Data publikacji:
2017
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Cretaceous
northern Germany
stable isotopes
low-magnesium calcite
palaeoceanography
kreda
Niemcy Północne
izotopy stabilne
kalcyt
paleoceanografia
Opis:
A high-resolution latest Early Campanian to Early Maastrichtian carbon and oxygen stable isotope record from the northern German Boreal shelf sea based on 537 analyses of co-occurring belemnites, brachiopods, inoceramids, oysters, and bulk rock samples is presented. All samples are precisely related to their stratigraphic, systematic and facies backgrounds and form an integrated, nearly 10-myr-long dataset with considerable palaeoenvironmental and palaeoceanographical implications. Petrographic studies indicate that low-magnesium calcitic coccoliths and calcispheres (i.e., planktic carbonate) predominate the bulk-rock data (marl-limestone rhythmites and chalks), thus representing a sea-surface water signal, and that only minor diagenetic alteration of the carbonate muds took place. Based on TL and CL microscopy, the investigated belemnites are extraordinarily well preserved, which may in part be explained by their early diagenetic surficial silicification (container effect), while the other macroinvertebrate groups are all less well preserved. The (plankton-dominated) δ13C values of the marl-limestone rhythmites and chalks (+1.1 to +2.5‰), recording a surface water signal, compare well with the δ13C data of inoceramids while δ13C brach.values (+1.5 to +3.0‰) are heavier than the bulk rock data. The large variation in the δ13Cbel. (-0.1 to +3.6‰) is attributed to isotopic disequilibrium of the biogenic carbonate formed by the belemnite animal. The bulk rock δ18O values show a remarkable low scatter, supporting petrographic observation of only minor diagenetic stabilisation/cementation, and can be approximated with northern German shelf sea-surface temperatures of ca. 20°C for the Late Campanian (ca. -2‰ δ18O), being slightly cooler during the Early Maastrichtian. The δ18O values of the belemnite rostra are even less variable and quite rich in heavier 18O (-0.7 to +0.6 with a mean of -0.1‰ δ18Obel.) in comparison to bulk rock and other skeletal components. Based on their excellent microstructural preservation and non-luminescence, we conclude that the belemnite rostra are diagenetically unaltered and have preserved the primary δ18O signal of ambient seawater (12±2°C). In the absence of any indication for migration from cooler water masses and evidence for authochtonous populations we assume that the belemnites of the genera Belemnitella and Belemnella lived as nektobenthos near the sea-floor and thus record the temperature of the bottom mixed layer of the seasonally weakly stratified north German shelf sea at water depths of 100 to 150 m; the temperature gradient was thus 12.5–18.75 m/1°C. A conspicuous latest Campanian cooling event is evident in both sea-surface and bottom-water temperatures. The δ18O values of nearly all investigated benthic fossils lie between the isotope values of pristine belemnites and bulk rock, and, therefore, should be used for palaeotemperature reconstructions only with great care.
Źródło:
Acta Geologica Polonica; 2017, 67, 1; 47-74
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Revision of Hamites wernickei Wollemann, 1902 (Cephalopoda, Ancyloceratina) from the classic Lüneburg section (Upper Cretaceous, northern Germany)
Autorzy:
Niebuhr, B.
Jagt, J. W. M.
Powiązania:
https://bibliotekanauki.pl/articles/139004.pdf
Data publikacji:
2016
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
campanian
ammonites
Nostoceras
Oxybeloceras
taxonomy
Europe
kampan
amonity
systematyka
Europa
Opis:
A re-examination of heteromorph ammonites of late Campanian age from the Zeltberg section at Lüneburg has demonstrated that the type series of Hamites wernickei in fact comprises two different species that are here assigned to the nostoceratid Nostoceras Hyatt, 1894 and the polyptychoceratid Oxybeloceras Hyatt, 1900. Nostoceras (Didymoceras) wernickei (Wollemann, 1902) comb. nov., to which three of the four specimens that were described and illustrated by Wollemann (1902) belong, has irregularities of ribbing and tuberculation and changes its direction of growth at the transition from the helicoidal whorls to the hook, which is a typical feature of members of the subfamily Nostoceratinae. Torsion of body chambers is not developed in hairpin-shaped ammonite species, which means that the species name wernickei is no longer available for such polyptychoceratine diplomoceratids. Consequently, the fourth specimen figured and assigned to Hamites wernickei by Wollemann (1902) is here transferred to Oxybeloceras and considered conspecific to material from the Hannover area (Lehrte West Syncline) as O. aff. crassum (Whitfield, 1877). In addition to the "Heteroceras-Schicht des Mucronaten-Senons" of Lüneburg (bipunctatum /roemeri Zone, upper upper Campanian), the geographic range of N. (D.) wernickei probably includes Upper Austria, Tunisia and the Donbass region, while O. aff. crassum is known from the Hannover area (northern Germany), southern France, northern Spain and Upper Austria.
Źródło:
Acta Geologica Polonica; 2016, 66, 4; 627-644
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Facies and integrated stratigraphy of the Upper Turonian (Upper Cretaceous) Grossberg Formation south of Regensburg (Bavaria, southern Germany)
Autorzy:
Niebuhr, B.
Richardt, N.
Wilmsen, M.
Powiązania:
https://bibliotekanauki.pl/articles/139052.pdf
Data publikacji:
2012
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
kreda
środowisko depozycyjne
turon
zintegrowana stratygrafia
Danubian Cretaceous Group
depositional environment
Grossberg Formation
integrated stratigraphy
Sedimentary unconformities
Turonian
Opis:
The Upper Turonian Grossberg Formation of the Regensburg area (Danubian Cretaceous Group, Bavaria, southern Germany) has a mean thickness of 20-25 m and consists of sandy bioclastic calcarenites and calcareous sandstones which are rich in bryozoans, serpulids and bivalves (oysters, rudists, inoceramids). Eight facies types have been recognized that characterize deposition on a southward dipping homoclinal ramp: the inner ramp sub-environment was characterized by high-energy sandwave deposits (sandy bioclastic rud- and grainstones, bioclastic sandstones) with sheltered inter-shoal areas. In mid-ramp settings, bioturbated, glauconitic, calcareous sand- and siltstones as well as bioturbated, bioclastic wacke- and packstones predominate. The carbonate grain association of the Grossberg Formation describes a temperate bryomol facies with indicators of warm-water influences. An inferred surplus of land-derived nutrients resulted in eutrophic conditions and favoured the heterozoan communities of the Grossberg Ramp. Carbon stable isotope geochemistry cannot significantly contribute to the stratigraphic calibration of the Grossberg Formation due to the depleted and trendless bulk-rock [delta^13]C values, probably resulting from a shallow-water aquafacies with depleted [delta^13]C DIC values and low [delta^13]C values of syndepositional and early diagenetic carbonate phases. However, strongly enriched skeletal calcite [delta^13]C values support a correlation of the Grossberg Formation with the mid-Late Turonian positive Hitch Wood isotope event (Hyphantoceras Event of northern Germany). This interpretation is supported by biostratigraphic data and a range from the Mytiloides striatoconcentricus Zone into the lower My. scupini Zone is indicated by inoceramid bivalves. Both the base and top of the Grossberg Formation are characterized by unconformities. Sequence boundary SB Tu 4 at the base is a major regional erosion surface (erosional truncation of the underlying Kagerhoh Formation in the Regensburg area, fluvial incision at the base of the Seugast Member of the Roding Formation in the Bodenwohr area towards the north and northeast). It is suggested that this unconformity corresponds to a major sea-level drop recognized in many other Cretaceous basins below the Hitch Wood or Hyphantoceras Event. The transgression and highstand of the Grossberg Formation is concomitant to the deposition of the fluvial Seugast Member and the onlap of the marginal-marine. Veldensteiner Sandstein. onto the Frankische Alb. The unconformity at the top of the Grossberg Formation (late Late Turonian SB Tu 5) is indicated by a ferruginous firm-/ hardground and an underlying zone of strongly depleted [delta^13]C values. The abrupt superposition by deeper marine marls of the lower Hellkofen Formation (uppermost Turonian.Lower Coniacian) may be connected with inversion tectonics at the southwestern margin of the Bohemian Massif.
Źródło:
Acta Geologica Polonica; 2012, 62, 4; 595-615
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Silicified sea life – Macrofauna and palaeoecology of the Neuburg Kieselerde Member (Cenomanian to Lower Turonian Wellheim Formation, Bavaria, southern Germany)
Autorzy:
Schneider, S.
Jäger, M.
Kroh, A.
Mitterer, A.
Niebuhr, B.
Vodrážka, R.
Wilmsen, M.
Wood, C. J.
Zágoršek, K.
Powiązania:
https://bibliotekanauki.pl/articles/139394.pdf
Data publikacji:
2013
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
Late Cretaceous
Danubian Cretaceous Group
macroinvertebrates
facies
Silica diagenesis
stratigraphy
kreda
makrobezkręgowce
facja
krzemionka diageneza
stratygrafia
Opis:
With approximately 100 species, the invertebrate macrofauna of the Neuburg Kieselerde Member of the Wellheim Formation (Bavaria, southern Germany) is probably the most diverse fossil assemblage of the Danubian Cretaceous Group. Occurring as erosional relicts in post-depositional karst depressions, both the Cretaceous sediments and fossils have been silicified during diagenesis. The Neuburg Kieselerde Member, safely dated as Early Cenomanian to Early Turonian based on inoceramid bivalve biostratigraphy and sequence stratigraphy, preserves a predominantly soft-bottom community, which, however, is biased due to near-complete early diagenetic loss of aragonitic shells. The community is dominated by epifaunal and semi-infaunal bivalves as well as sponges that settled on various (bio-) clasts, and may widely be split into an early bivalve-echinoid assemblage and a succeeding sponge-brachiopod assemblage. In addition to these groups we document ichnofauna, polychaete tubes, nautilids and bryozoans. The fauna provides evidence of a shallow to moderately deep, calm, fully marine environment, which is interpreted as a largescale embayment herein. The fauna of the Neuburg Kieselerde Member is regarded as an important archive of lower Upper Cretaceous sea-life in the surroundings of the Mid-European Island.
Źródło:
Acta Geologica Polonica; 2013, 63, 4; 555-610
0001-5709
Pojawia się w:
Acta Geologica Polonica
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-4 z 4

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies