Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Wyszukujesz frazę "Kaya, A. Y." wg kryterium: Autor


Wyświetlanie 1-3 z 3
Tytuł:
Career decision making in the maritime industry: research of merchant marine officers using Fuzzy AHP and Fuzzy TOPSIS methods
Autorzy:
Kaya, A. Y.
Asyali, E.
Ozdagoglu, A.
Powiązania:
https://bibliotekanauki.pl/articles/134952.pdf
Data publikacji:
2018
Wydawca:
Akademia Morska w Szczecinie. Wydawnictwo AMSz
Tematy:
maritime industry
individual career planning
career decision making
vessel types
Fuzzy AHP
Fuzzy TOPSIS
Opis:
Individual career planning plays a key role in achieving success, goals, and ideals in professional life. However, managing to accomplish such favorable results depends on the correct decisions of graduates to choose suitable job opportunities. Oceangoing watchkeeping officers, who are responsible for the management and administration of vessels at sea, have several job options which are differentiated by vessel type, such as; bulk carriers, chemical tankers, general cargo ships, and container ships, etc. This study aims to discuss the criteria that Turkish oceangoing watchkeeping officers take into consideration and the values they attribute to such criteria regarding their vessel type preference. The aim is to provide instructions to oceangoing watchkeeping officer candidates and academicians who are interested in these issues and related parties of maritime industry. Attribution values of the criteria are determined by means of Fuzzy Analytic Hierarchy Process (AHP) and the most preferred alternative vessel type is revealed through Fuzzy TOPSIS methodology. According to the study results, the most important factors are; revenue, perception of occupational health and safety, and labor work density. The most preferred ship type among alternatives is the oil tanker.
Źródło:
Zeszyty Naukowe Akademii Morskiej w Szczecinie; 2018, 55 (127); 95-103
1733-8670
2392-0378
Pojawia się w:
Zeszyty Naukowe Akademii Morskiej w Szczecinie
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Effect of Chip Amount on Microstructural and Mechanical Properties of A356 Aluminum Casting Alloy
Autorzy:
Kaya, A. Y.
Özaydın, O.
Yağcı, T.
Korkmaz, A.
Armakan, E.
Çulha, O.
Powiązania:
https://bibliotekanauki.pl/articles/2079825.pdf
Data publikacji:
2021
Wydawca:
Polska Akademia Nauk. Czytelnia Czasopism PAN
Tematy:
A356
gravity casting
chip melting
mechanical properties
recycling
odlewanie grawitacyjne
topienie
właściwości mechaniczne
recykling
Opis:
Aluminum casting alloys are widely used in especially automotive, aerospace, and other industrial applications due to providing desired mechanical characteristics and their high specific strength properties. Along with the increase of application areas, the importance of recycling in aluminum alloys is also increasing. The amount of energy required for producing primary ingots is about ten times the amount of energy required for the production of recycled ingots. The large energy savings achieved by using the recycled ingots results in a significant reduction in the amount of greenhouse gas released to nature compared to primary ingot production. Production can be made by adding a certain amount of recycled ingot to the primary ingot so that the desired mechanical properties remain within the boundary conditions. In this study, by using the A356 alloy and chips with five different quantities (100% primary ingots, 30% recycled ingots + 70% primary ingots, 50% recycled ingots + 50% primary ingots, 70% recycled ingots + 30% primary ingots, 100% recycled ingots), the effect on mechanical properties has been examined and the maximum amount of chips that can be used in production has been determined. T6 heat treatment was applied to the samples obtained by the gravity casting method and the mechanical properties were compared depending on the amount of chips. Besides, microstructural examinations were carried out with optical microscopy techniques. As a result, it has been observed that while producing from primary ingots, adding 30% recycled ingot to the alloy composition improves the mechanical properties of the alloy such as yield strength and tensile strength to a certain extent. However, generally a downward pattern was observed with increasing recycled ingot amount.
Źródło:
Archives of Foundry Engineering; 2021, 21, 3; 19-26
1897-3310
2299-2944
Pojawia się w:
Archives of Foundry Engineering
Dostawca treści:
Biblioteka Nauki
Artykuł
Tytuł:
Solvent extraction behaviour of scandium from lateritic nickel-cobalt ores using different organic reagents
Autorzy:
Ferizoglu, E.
Kaya, S.
Topkaya, Y. A.
Powiązania:
https://bibliotekanauki.pl/articles/110877.pdf
Data publikacji:
2018
Wydawca:
Politechnika Wrocławska. Oficyna Wydawnicza Politechniki Wrocławskiej
Tematy:
Solvent extraction
laterites
scandium
mixed hydroxide precipitate
Opis:
Scandium is one of the most important and strategic metals that can be recovered as a by-product from lateritic nickel-cobalt ores. In this research, different extractants were investigated to extract scandium from sulphate medium by using solvent extraction method. Generally, the organic extractants are classified as acidic, neutral and basic reagents. Thus, the aim of the present study was to compare scandium extraction efficiencies of some acidic, neutral and basic organic reagents. For this reason, Ionquest 290 (Bis(2,4,4-trimethylpenthyl) phosphonic acid), DEHPA (Di(2-ethylhexyl) phosphoric acid), Cyanex 272 ((Bis(2,4,4-trimethylpentyl) phosphinic acid) which are acidic organophosphorus compounds, Cyanex 923 (Trialkyl phosphine oxide), which is a neutral organophosphorus compound, and Primene JMT, a basic extractant, were used. The extraction efficiencies of these extractants were studied with respect to the extractant concentration at the same pH and O/A (organic/aqueous) phase ratio. As a result of this study, DEHPA and Primene JMT were found to have high scandium extraction efficiencies with lower impurity co-extractions at pH=0.55 with O/A phase ratio 1/1.
Źródło:
Physicochemical Problems of Mineral Processing; 2018, 54, 2; 538-545
1643-1049
2084-4735
Pojawia się w:
Physicochemical Problems of Mineral Processing
Dostawca treści:
Biblioteka Nauki
Artykuł
    Wyświetlanie 1-3 z 3

    Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies